DOI QR코드

DOI QR Code

Filtration of Red Tide Dinoflagellates by an Intertidal Bivalve, Glauconome chinensis Gray: An Implication for the Potentials of Bivalves in Tidal Flats

  • Lee Chang-Hoon (South Sea Institute, Korea Ocean Research and Development Institute) ;
  • Song Jae Yoon (Department of Oceanography, Kunsan National University) ;
  • Chung Ee-Yung (School of Marine Life Science, Kunsan National University)
  • Published : 2003.06.01

Abstract

To understand the physiology of a suspension-feeding bivalve and its potential impacts on the dynamics of red tides on tidal flats, rates of clearance and ingestion of Glauconome chinensis were measured as a function of algal concentration, when the bivalve was fed on a nontoxic strain of red tide dinoflagellate Prorocentrum minimum, Cochlodinium polykrikoides or Scrippsiella trochoidea. With increasing algal concentration, weight-specific clearance rate increased rapidly at lower concentrations and after reaching the maximum at ca. 0.2 to 1.0 mgC/L, it decreased at higher concentrations. Maximum clearance rate was nearly equal for different algal species and ranged between 2.1 and 2.6 L/g/hr. Weight-specific ingestion rate also increased at lower algal concentrations but saturated at higher concentrations. Maximum ingestion rate was 2 to 10 fold different with different algal species: S. trochoidea (10.1 mgC/g/hr), P. minimum (3.9 mgC/g/hr), and C. polykrikoides (0.99 mgC/g/hr). Nitrogen and protein content showed that S. trochoidea is the best among the tested three red tide dinoflagellates. The maximum filtration capacity, calculated by combining the data on ingestion rate from laboratory experiments and those from the field for the density of the bivalve and the red tide dinoflagellates was 4.7, 1.4, and 25.3 tons/m2/day for P. minimum, C. polykrikoides, and S. trochoidea, respectively. It is hypothesized that the abundant suspension-feeding bivalves in tidal flats can effectively mitigate the outbreak of red tides.

Keywords

References

  1. Bayne, B.L, R.J. Thompson and J. Widdows. 1976. Physiology: I. In: Marine Mussels: their Ecology and physiology, Bayne, B.L. ed., Cambridge University Press. Cambridge, London, New York, Melbourne, pp. 121-206
  2. Carlson, D.J., D.W. Townsend, A.L. Hilyard and J.F. Eaton. 1984. Effect of an intertidal mudflat on plankton of the overlying water column. Can. J. Fish. Aquat. Sci., 41, 1523-1528 https://doi.org/10.1139/f84-188
  3. Clausen, I. and H.U. Riisgard. 1996. Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filterpump to nutritional needs. Mar. Ecol. Prog. Ser. 141 37-45 https://doi.org/10.3354/meps141037
  4. Cloem., J.E. 1982. Does the benthos control phytoplankton biomass in South San Francisco Bay? Mar. Ecol. Prog. Ser., 9, 191-202 https://doi.org/10.3354/meps009191
  5. Frost, B.W. 1972. Effects of size and concentration of food paticles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr., 17, 805-815 https://doi.org/10.4319/lo.1972.17.6.0805
  6. Gerritsen, J, A.F. Holland and D.E. Irvine. 1994. Suspension-feeding bivalves and the fate of primary production: an estuarine model applied to Chesapeake Bay. Estuaries, 17, 403-416 https://doi.org/10.2307/1352673
  7. Guillard, R.R.L. and J.H. Ryther. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Grun. Can. J. Microbiol., 8, 229-239 https://doi.org/10.1139/m62-029
  8. Jeong, H.J., J.H. Shim, J.S. Kim, J.Y. Park, C.W. Lee and Y. Lee. 1999. Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red tide and toxic dinoflagellates. Mar. Ecol. Prog. Ser., 176, 263-277 https://doi.org/10.3354/meps176263
  9. Kim, C.S., S.G. Lee, C.K. Lee, H.G. Kim and J. Jung. 1999. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide dinoflagellate Cochloainium polykrikoides. J. Plankton Res., 21, 2105-2115 https://doi.org/10.1093/plankt/21.11.2105
  10. Kim, C.S., H.M. Bae, S.J. Yun, Y.C. Cho and H.G. Kim. 2000. Ichthyotoxicity of a harmful dinoflagellate Cochlodinium polykrikoides: Aspect of hematological responses of fish exposed to algal blooms. J. Fish. Sci. Technol., 3, 111-117
  11. Kim, H.K., S.G. Lee, K.H. An, S.H. Youn, P.Y. Lee, C.K. Lee, E.S. Cho, J.B. Kim, H.G. Choi and P.J. Kim. 1997. Recent red tides in Korean coastal waters. Nationa Fisheries Research and Development Institute Korea. 280 pp. (in Korean)
  12. LEE, J.S. 1996. Bioactive components from red tide plankton, Cochlodinium polykrikoides. J. Kor. Fish. Soc., 29, 165-173. (in Korean)
  13. LEE, C.H., J.Y. Song and E.Y. Chung. 2002. Effect of body size on feeding physiology of an intertidal bivalve, Glauconome chinensis Gray (Glauconomidae). J. Fish. Sci. Technol., 5(3), 183-190
  14. Lesser, M.P. and S.E. Shumway. 1993. Effects of toxic dinoflagellates on clearance rates and survival in juvenile bivalve molluscs. J. Shellfish Res., 12, 377-381
  15. Li, S.C., W.X. Wang and D.P.H. Hsieh. 2001. Feeding and absorption of the toxic dinoflagellate Alexandrium tamarense by two marine bivalves from the South China Sea. Mar. Biol., 139, 617-624 https://doi.org/10.1007/s002270100613
  16. Luckenbach, M.W., K.G. Sellner, S.E. Shumway and K. Greene. 1993. Effects of two bloom-forming dinoflagellates, Prorocentrum minimum and Gyrodinium uncatenum, on the growth and survival of the eastern oyster, Crassostrea virginica (Gmelin 1791). J. Shellfish Res., 12, 411-415
  17. Matsuyarna, Y., T. Uchida and T. Honjo. 1997. Toxic effects of the dinoflagellate Heterocapsa circularisquama on clearance rate of the blue mussel Mytilus galloprovincialis. Mar. Ecol. Prog. Ser., 146, 73-80 https://doi.org/10.3354/meps146073
  18. Officer, C.B., T.J. Smayda and R. Mann. 1982. Benthic filter feeding: a natural eutrophication control. Mar. Ecol. Prog. Ser., 9, 203-210 https://doi.org/10.3354/meps009203
  19. Peterson, G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem., 83, 346-356 https://doi.org/10.1016/0003-2697(77)90043-4
  20. Riisg$\aa$rd, H.U. 1988. Feeding rates in hard clam (Mercenaria mercenaria) veliger larvae as a function of algal (Isochrysis galbana) concentration. J. Shellfish Res., 7, 377-380
  21. Shumway, S.E., T.L. Cucci, M.P. Lesser, N. Bourne and B. Bunting. 1997. Particle clearance and selection in three species of juvenile scallops. Aquacult. Int., 5, 89-99 https://doi.org/10.1007/BF02764790
  22. Sicard, M.T., A.N. Maeda-Martinez, P. Ormart, T. Reynoso-Granados and L. Carvalho. 1999. Optimum temperature for growth in the catarina scallop (Argopecten ventricosus-circularis, Sowerby II, 1842). J. Shellfish Res., 18, 385-392
  23. Werner, I. and J.T. Hollibaugh. 1993. Potamocorbula amurensis: Comparison of clearance rates and assimilation efficiencies for phytoplankton and bacterioplankton. Limnol. Oceanogr., 38, 949-964 https://doi.org/10.4319/lo.1993.38.5.0949
  24. Zar, J.H. 1984. Biostatistical analysis, 2nd ed., PrenticeHall International, Inc., Englewood Cliffs, NJ. 718 pp

Cited by

  1. Filtration Rates of Juvenile Purple Clam, Saxidomus purpuratus (Sowerby) Feeding on Red Tide Dinoflagellates vol.28, pp.4, 2003, https://doi.org/10.9710/kjm.2012.28.4.349