References
- Andelman, I.B. and J.E. Snodgrass. 1974. Incidence and significance of polynuclear aromatic hydrocarbons in the water environment. Crit. Rev. Environ. Control, 4(1), 69-83 https://doi.org/10.1080/10643387409381611
- APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th edition. American Public Health Association, Washington, D.C., USA
-
$Bocquen\'{e}$ , G., F. Galgani and P. Truquet. 1990. Characterization and assay conditions for use of AChE activity from several marine species in pollution monitoring. Mar. Environ. Res., 30, 75-89 https://doi.org/10.1016/0141-1136(90)90012-D - Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Duncan, D.B. 1955. Multiple-range and multiple F tests. Biorneirics., 11, 1-42 https://doi.org/10.2307/3001478
- Ellman, G. L., K.D. Courtney, V.J. Andreas and R.M. Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochern. Pharmacol., 7, 88-95 https://doi.org/10.1016/0006-2952(61)90145-9
- Holland, H.T., D.L. Coppage and P.A. Butler. 1967. Use of fish brain acetylcholinesterase to monitor pollution by organophosphorus pesticides. Bull. Environ. Contam. Toxicol., 2, 156-162 https://doi.org/10.1007/BF01684015
- Kang, J.J. and H.W. Fang. 1997. Polycyclic aromatic hydrocarbons inhibit the activity of acetylcholinesterase purified from electric eel. Biochem. Biophys. Res. Commun., 238, 367-369 https://doi.org/10.1006/bbrc.1997.7293
- Kirby, M.F., S. Morris, M. Hurst, J.S. Kirby, P. Neall, T. Tylor and A. Fagg. 2000. The use of cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Mar. Pollut. Bull., 40(9), 780-791 https://doi.org/10.1016/S0025-326X(00)00069-2
- Manzo, L., A.F. Castoldi, T. Coccini. A.D. Rossi, P. Nicotera and L.G. Costa. 1995. Mechanisms of neurotoxicity: applications to human biomonitoring. Toxicol. Lett., 77(1-3), 63-72 https://doi.org/10.1016/0378-4274(95)03273-8
- Martinez-Tabche, L., B.R. Mora, C. German-Faz and E. Diaz-Pardo. 1998. Acetylcholinesterase activity of the freshwater cladoceran, Moina macrocopa, used as an in vitro screening tool for water quality. Aquat. Ecosyst. Health Manage., 1, 317-322 https://doi.org/10.1016/S1463-4988(98)00016-5
- Ogata, M. and Y. Miyake. 1979. Disappearance of aromatic hydrocarbons and organic sulphur compounds from fish reared in crude oil suspensions. Water Res., 13, 75-78 https://doi.org/10.1016/0043-1354(79)90257-4
- Sancho, E., J.J. Ceron and M.D. Ferrando. 2000. Cholinesterase activity and hematological parameters as biomarkers of sublethal molinate exposure in Anguilla anguilla. Ecotoxicol. Environ. Saf., 46, 81-86 https://doi.org/10.1006/eesa.1999.1888
Cited by
- Effect of phenanthrene on haematological parameters in olive flounder, Paralichthys olivaceus (Temminch et Schlegel) vol.35, pp.14, 2004, https://doi.org/10.1111/j.1365-2109.2004.01152.x
- Effects of Diethyl Phthalate on Acetylcholinesterase Activity in Olive Flounder (Paralichthys olivaceus) Following Short-term Exposure vol.7, pp.3, 2003, https://doi.org/10.5657/fas.2004.7.3.171
- Effects of dibutyl phthalate and di-ethylhexyl phthalate on acetylcholinesterase activity in bagrid catfish, Pseudobagrus fulvidraco (Richardson) vol.25, pp.6, 2009, https://doi.org/10.1111/j.1439-0426.2009.01331.x
- Impact of endosulfan on certain hematological and biochemical parameters of catfishLabeo fimbriatus: Sublethal study vol.27, pp.6, 2003, https://doi.org/10.1177/0748233710393397
- Comparative toxicity assessment of in situ burn residues to initial and dispersed heavy fuel oil using zebrafish embryos as test organisms vol.28, pp.13, 2003, https://doi.org/10.1007/s11356-020-11729-5