DOI QR코드

DOI QR Code

Chemical Budgets in Intensive Carp Ponds

  • Peng Lei (Department of Aquaculture, Pukyong National University) ;
  • Oh Sung-Yong (Department of Aquaculture, Pukyong National University) ;
  • Jo Jae-Yoon (Department of Aquaculture, Pukyong National University)
  • Published : 2003.12.01

Abstract

Budgets for water, nitrogen, and chemical oxygen demand (COD) were determined in two 0.012 ha earthy-bottom ponds stocked with Israeli strain common carp at an initial stocking density of $20\;fish/m^3$. Total ammonia nitrogen (TAN) concentrations increased continuously but later decreased in pond A as a consequence of high nitrification. COD concentrations increased during the experimental period due to the accumulation of feed input. Nutrient budgets showed that feed represented $94-95\%$ of nitrogen input and about 99% of organic matter input. Fish harvest accounted for $40\%$ of nitrogen and organic matter input. Seepage and water exchange removed $15-17\%$ of nitrogen input but only $1-2\%$ of organic matter. Draining of the ponds removed $20-26\%$ of input nitrogen, mostly in inorganic forms, but removed only minus organic matter. Fish and water column respiration accounted for $39\%$ of organic matter input, and benthic respiration accounted for $7-12\%$ of organic matter input. No significant change of nitrogen and organic matter in both pond bottoms were found during the three-month growth period. The unrecovered input nitrogen, about $6.3-13\%$, was lost through denitrification and ammonia volatilization. On a dry matter basis, fish growth removed $31\%$ of total feed input and left $69\%$ as metabolic wastes.

Keywords

References

  1. Acosta-Nassar, M.V., M.M. Julio and E.C. Jorge. 1994. The nitrogen budget of a tropical semi-intensive freshwater fish culture pond. J. World Aquacult. Soc., 25, 261-270 https://doi.org/10.1111/j.1749-7345.1994.tb00189.x
  2. Andersen, T.K., M.T. Jensen and J. Sorensen. 1984. Diurnal variation of nitrogen cycling in coastal marine sediments. I. Denitrification. Mar. Biol., 83, 171-176 https://doi.org/10.1007/BF00394725
  3. AOAC 1995. Official Methods of Analysis of the Association of Official Analytical Chemists, 16th ed. Arlington, VA, USA
  4. Avnimelech, Y. and M. Lacher. 1979. A tentative nutrient balance for intensive fish ponds. Bamidgeh 31, 3-8
  5. Avnimelech, Y., N. Mozes and B. Weber. 1992. Effects of aeration on nitrogen and organic matter transformation in simulated fish ponds. Aquacul. Eng., 11, 157-169 https://doi.org/10.1016/0144-8609(92)90002-F
  6. Beveridge, M.C.M., A. Wahab and S. Dewan. 1994. Effects of daily harrowing on pond soil and water nutrient levels and on Rohu fingerling production. Prog. Fish-Cult., 56, 282-287 https://doi.org/10.1577/1548-8640(1994)056<0282:EODHOP>2.3.CO;2
  7. Boyd, C.E. 1973. The chemical oxygen demand of waters and biological materials from ponds. Trans. Am. Fish. Soc., 102, 606-611 https://doi.org/10.1577/1548-8659(1973)102<606:TCODOW>2.0.CO;2
  8. Boyd, C.E. 1985a. Chemical budgets for channel catfish ponds. Trans. Am. Fish. Soc., 114, 291-298 https://doi.org/10.1577/1548-8659(1985)114<291:CBFCCP>2.0.CO;2
  9. Boyd, C.E. 1985b. Pond evaporation. Trans. Am. Fish. Soc., 114, 299-303 https://doi.org/10.1577/1548-8659(1985)114<299:PE>2.0.CO;2
  10. Boyd, C.E. 1990. Water Quality in Ponds for Aquaculture. Alabama Agriculture Experiment Station, Auburn University, AL, USA
  11. Boyd, C.E. and A. Gross. 1999. Biochemical oxygen demand in channel catfish Ictalurus punctatus pond waters. J. World Aquacul. Soc., 30, 349-356 https://doi.org/10.1111/j.1749-7345.1999.tb00685.x
  12. Boyd, C.E. and C.S. Tucker. 1992. Water Quality and Pond Soil Analysis for Pond Aquaculture. Alabama Agricultural Experiment Station, Auburn University,AL, USA
  13. Cline, J.M., T.L. East and S.T. Threlkeld. 1994. Fish interaction with the sediment-water interface. Hydrobiologia, 275/276, 301-311 https://doi.org/10.1007/BF00026721
  14. Colt, J.E. and D.A. Armstrong. 1981. Nitrogen toxicity to crustacean, fish, and mollusks. In: Allen, L.J. and E.C Kinney, eds. Proceedings of the Bio-Engineering Symposium for Fish Culture, Fish Culture Section, American Fisheries Society, Bethesda, MD, USA, pp. 34-47
  15. Daniels, H.V. and C.E. Boyd. 1989. Chemical budgets for polyethylene-lined, brackishwater ponds. J. World Aquacul. Soc., 20, 53-60 https://doi.org/10.1111/j.1749-7345.1989.tb00524.x
  16. Diab, S., M. Kochba, D. Mires and Y. Avnimelech. 1992. Combined intensive-extensive (CIE) pond system. A: Inorganic nitrogen transformations. Aquaculture, 101, 33-39 https://doi.org/10.1016/0044-8486(92)90230-I
  17. Diab, S. and M. Shilo. 1986. Transformation of nitrogen in sediment of fish ponds in Israel. Bamidgeh, 38, 67-88
  18. Eaton, A.D., L.S. Clesceriand A.E. Greenburg. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, D.C., USA
  19. EI Samra, I.M. and J. Olah. 1979. Significance of nitrogen fixation in fish ponds. Aquaculture, 18, 367-372 https://doi.org/10.1016/0044-8486(79)90039-5
  20. Emerson, K., R.C. Russo, R.E. Lund and R.V. Thurston. 1975. Aqueous ammonia equilibrium calculation: effect of pH and temperature. J. Fish. Board Can., 32, 2379-2383 https://doi.org/10.1139/f75-274
  21. Flis, J. 1968. Anatomicrohitopathological changes induced in carp (Cyprinus carpio) by ammonia water. Part I. Effects of toxic concentrations. Acta Hidrobiol., 10, 205-224
  22. Foy, R.H. and R. Rosell. 1991a. Loadings of nitrogen and phosphorus from a Northern Ireland fish farm. Aquaculture, 96, 17-30 https://doi.org/10.1016/0044-8486(91)90136-U
  23. Foy, R.H. and R. Rosell. 1991b. Fractions of phosphorous and nitrogen loadings from a Northern Ireland fish farm. Aquaculture, 96, 31-42 https://doi.org/10.1016/0044-8486(91)90137-V
  24. Green, B.W. and C.E. Boyd. 1995. Chemical budgets for organically fertilized fish ponds in the dry tropics. J. World Aquacul. Soc., 26, 284-296 https://doi.org/10.1111/j.1749-7345.1995.tb00257.x
  25. Hargreaves, J.A. 1997. A simulation model of ammonia dynamics in commercial catfish ponds in the southeastern United States. Aquacul. Eng., 16, 27-43 https://doi.org/10.1016/S0144-8609(96)01013-8
  26. Hargreaves, J.A. and C.S. Tucker. 1996. Evidence for control of water quality in channel catfish lctalurus punctus ponds by phytoplankton biomass and sediment oxygenation. J. World. Aquacul. Soc., 27(3), 21-29 https://doi.org/10.1111/j.1749-7345.1996.tb00590.x
  27. Hasan, M.R. and D.J. Macintosh. 1986. Acute toxicity of ammonia to common carp fry. Aquaculture, 54, 97-107 https://doi.org/10.1016/0044-8486(86)90261-9
  28. Hepher, B. 1962. Primary production in fish ponds and its application to fertilization experiment. Limnol. Oceanogr., 7, 131-136 https://doi.org/10.4319/lo.1962.7.2.0131
  29. Home, A.J. and C.R. Goldman. 1972. Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts. Limnol. Oceanogr., 17, 678-692 https://doi.org/10.4319/lo.1972.17.5.0678
  30. Howarth, R., W.R. Marino and J. Lane. 1988. Nitrogen fixiation in freshwater, estuary, and marine ecosystems. I. Rates and importance. Limnol. and Oceanogr., 33, 669-687 https://doi.org/10.4319/lo.1988.33.4_part_2.0669
  31. Kaspar, H.F., G.H. Hall and A.J. Holland. 1988. Effects of sea cage salmon farming on sediment nitrification and dissimilatory nitrate reductions. Aquaculture, 70, 333-344 https://doi.org/10.1016/0044-8486(88)90117-2
  32. Krom, M.D. and A. Neori. 1989. A total nutrient budget for a marine fishpond with circularly moving seawater. Aquaculture, 83, 345-358 https://doi.org/10.1016/0044-8486(89)90045-8
  33. Krom, M.D., C. Porter and H. Gordin. 1985. Nutrient budget of a marine fish pond in Eilat, Israel. Aquaculture, 51, 65-80 https://doi.org/10.1016/0044-8486(85)90240-6
  34. Lewis, W.M. and D.P. Morris. 1986. Toxicity of nitrite to fish: A review. Trans. Am. Fish. Soc., 115(2), 183-195 https://doi.org/10.1577/1548-8659(1986)115<183:TONTF>2.0.CO;2
  35. Ludwig, G.M. 1996. Comparison of channel catfish Ictalurus punctatus and fathead minnow Pimephales promelas production and water quality among a polyculture and two monoculture systems. Aquaculture, 114, 177-187
  36. Madenjian, C.P., G.L. Rogers and A.W. Fast. 1987. Predicting nighttime oxygen loss in prawn ponds of Hawii. Part 1. Evaluation of traditional methods. Aquacul. Eng., 6, 209-225 https://doi.org/10.1016/0144-8609(87)90005-7
  37. Meade, J.W. 1985. Allowable ammonia for fish culture. Prog. Fish-Cult., 47(3), 135-145 https://doi.org/10.1577/1548-8640(1985)47<135:AAFFC>2.0.CO;2
  38. Mikkelsen, D.S. 1987. Nitrogen budgets in flooded soils used for rice production. Plant Soil, 100, 71-97 https://doi.org/10.1007/BF02370933
  39. Murphy, T.P. and B.G. Brownlee. 1981. Ammonia volatilization in a hypertrophic prairie lake. Can. J. Fish. Aqua. Sci., 38, 1035-1039 https://doi.org/10.1139/f81-142
  40. Nath, S.S. and J.P. Bolte. 1998. A water budget model for pond aquaculture. Aquacul. Eng., 18, 175-188 https://doi.org/10.1016/S0144-8609(98)00029-6
  41. Nuriega-Curtis, P. 1979. Primary production and related fish yields in intensively manured fish ponds. Aquaculture, 17, 335-344 https://doi.org/10.1016/0044-8486(79)90088-7
  42. Ram, N.M., O. Zur and Y. Avnimelech. 1982. Microbial changes occurring at the sediment-water interface in an intensively stocked and fed fish pond. Aquaculture, 27, 63-72 https://doi.org/10.1016/0044-8486(82)90110-7
  43. Rimon, A. and M. Shilo. 1982. Factors which affect the intensification of fish breeding in Israel. 1. Physical, chemical and biological characteristics of intensive fish ponds in Israel. Bamidgeh, 34(3), 87-100
  44. Schroder, G.L. 1975. Night-time material balance in fish ponds receiving organic wastes. Bamidgeh, 27, 65-74
  45. Schroder, G.L. 1987. Carbon and nitrogen budgets in manured fish pond on Israel's coastal plain. Aquaculture, 62, 259-279 https://doi.org/10.1016/0044-8486(87)90169-4
  46. Seok, K., S. Leonard, C.E. Boyd and M.F. Schwartz. 1995. Water quality in annually drained and undrained channel catfish ponds over a three-year period. Prog. Fish-Cult., 57, 52-58 https://doi.org/10.1577/1548-8640(1995)057<0052:CWQIAD>2.3.CO;2
  47. Shapiro, J. and O. Zur. 1981. A simple in situ method for measuring benthic respiration. Water Res., 15, 283-285 https://doi.org/10.1016/0043-1354(81)90122-6
  48. Shilo, M. and A. Rimon. 1982. Factors which affect the intensification of fish breeding in Israel. 2. Ammonia transformation in intensive fish ponds. Bamidgeh, 34(3), 101-114
  49. Teichert-Coddington, D.R., D. Martinez and E. Ramirea. 2000. Partial nutrient budgets for semi-intensive shrimp farms in Honduras. Aquaculture, 190, 139-154 https://doi.org/10.1016/S0044-8486(00)00389-6
  50. Thoman, E.S., E.D. Ingall, D.A. Davis and C.R. Arnold. 2001. A nitrogen budget for a closed, recirculating mariculture system. Aquacul. Eng., 24, 195-211 https://doi.org/10.1016/S0144-8609(00)00070-4
  51. Thomforde, H.W. and C.E. Boyd. 1991. Effects of aeration on water quality and channel catfish production. Bamidgeh, 43, 3-26
  52. Tucker, C.S. and M. van der Ploeg. 1993. Seasonal changes in water quality in commercial channel catfish ponds in Mississippi. J. World Aquacul. Soc., 24(4), 473-481 https://doi.org/10.1111/j.1749-7345.1993.tb00576.x
  53. Weiler, R.R. 1979. Rate of loss of ammonia from water to the atmosphere. J. Fish. Res. Board Can., 36, 685-689 https://doi.org/10.1139/f79-101
  54. Wheaton, F.W., J.N. Hochheimer, G.E. Kaiser, M.J. Krones, G.S. Leiby and C.C. Easter. 1994. Nitrification filter principles. In: Timmons, M.B. and T.M. Losordo, eds. Aquaculture Water Reuse Systems: Engineering Design and Management. Elsevier Science, The Netherlands, pp. 101-126
  55. Zur, O. 1981. Primary production in intensive fish ponds and a complete organic carbon balance in the ponds. Aquaculture, 23, 197-210 https://doi.org/10.1016/0044-8486(81)90014-4