DOI QR코드

DOI QR Code

The Spotted Flounder (Verasper variegatus) Growth Hormone cDNA and Its Evolutionary Implications

  • Lee Jeong-Ho (Biotechnology Research Center, National Fisheries Research and Development Institute(NFRDI)) ;
  • Lee Sang-Jun (Biotechnology Research Center, National Fisheries Research and Development Institute(NFRDI)) ;
  • Kim Kyung-Kil (Biotechnology Research Center, National Fisheries Research and Development Institute(NFRDI)) ;
  • Kim Woo-Jin (Biotechnology Research Center, National Fisheries Research and Development Institute(NFRDI)) ;
  • Park Doo-Won (Biotechnology Research Center, National Fisheries Research and Development Institute(NFRDI)) ;
  • Park Jung-Youn (Biotechnology Research Center, National Fisheries Research and Development Institute(NFRDI))
  • Published : 2003.12.01

Abstract

The full-length cDNA encoding the pre-protein growth hormone (sfGH) from spotted flounder (Verasper variegatus) was amplified by the rapid amplification of cDNA ends (RACE) using degenerated oligonucleotide primers derived from conserved growth hormone sequences. It consists of 901 nucleotides in length, including the coding region of 609 nucleotides, 111 nucleotides of a 5' untranslated region, and 181 nucleotides of a 3' untranslated region. The conserved polyadenylation signal (AATAAA) lies 12 bases upstream from the poly (A) tail. The deduced amino acid sequence shows an open reading frame encoding a pre-protein of 203 amino acids and a putative signal peptide of 17 amino acids, suggesting that the mature hormone consists of 186 amino acids. The analyses of sfGH reveal some unique structural features. The repetitive sequences are located in the 5' untranslated region of sfGH cDNA and consist of tandem arrays of imperfect direct repeat monomers. Moreover, sfGH contains six Cys residues, as opposed to four or five in other GHs, and it is clearly distinguishable from olive flounder (Paralichthys olivaceus) GH, which lacks a region corresponding to residues 175-188 in alignment positions. It has important implications from an evolutionary standpoint, suggesting possible divergence among flatfishes.

Keywords

References

  1. Agellon, L.B. and T.T. Chen. 1986. Rainbow trout growth hormone: molecular cloning of cDNA and expression in Escherichia coli. DNA, 5, 463-471 https://doi.org/10.1089/dna.1.1986.5.463
  2. Cooke, N.E., D. Coit, R.I. Weiner, J.D. Baxter and J.A. Martial. 1980. Structure of cloned DNA complementary to rat prolactin messenger RNA. J. BioI. Chem., 255, 6502-6510
  3. DeNoto, F.M., D.D. Moore and H.M. Goodman. 1981. Human growth hormone DNA sequence and mRNA structure: possible alternative splicing. Nucleic Acids Res., 9, 3719-3730 https://doi.org/10.1093/nar/9.15.3719
  4. Hotta, Y., M. Aritaki, M. Tagawa and M. Tanaka. 2001. Changes in tissue thyroid hormone levels of metamorphosing spotted halibut Verasper variegatus reared at different temperatures. Fish. Sci., 67, 1119-1124 https://doi.org/10.1046/j.1444-2906.2001.00369.x
  5. Jeanrnougin, F., J.D. Thompson, M. Gouy, D.G. Higgins and T.J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci., 23, 403-405 https://doi.org/10.1016/S0968-0004(98)01285-7
  6. Koren, Y., S. Sarid, R. Ber and V. Daniel. 1989. Carp growth hormone: molecular cloning and sequencing of cDNA. Gene, 77, 309-315 https://doi.org/10.1016/0378-1119(89)90078-4
  7. Martial, J.A., R.A. Hallewell, J.D. Baxter and H.M. Goodman. 1979. Human growth hormone: complementary DNA cloning and expression in bacteria. Science, 205, 602-607 https://doi.org/10.1126/science.377496
  8. Miller, W.L., J.A. Martial and J.D. Baxter. 1980. Molecular cloning of DNA complementary to bovine growth hormone mRNA. J. Biol. Chem., 255, 7521-7524
  9. Momota, H., R. Kosugi, H. Hiramatsu, H. Ohgai, A. Hara and H. Ishioka. 1988. Nucleotide sequence of cDNA encoding the pregrowth hormone of red sea bream (Pagrus major). Nucleic Acids Res., 16, 3107 https://doi.org/10.1093/nar/16.7.3107
  10. Nam, Y.K. and D.S. Kim. 2002. Molecular Cloning and Alternative Splicing of Growth Hormone Transcripts in Greenling, Hexagrammos otakii. J. Kor. Fish. Soc., 35, 676-681
  11. Niall, H.D., M.L. Hogan, R. Sauer, I.Y. Rosenblum and F.C. Greenwood. 1971. Sequences of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene reduplication. Proc. Nat'l. Acad. Sci., USA, 68, 866-870 https://doi.org/10.1073/pnas.68.4.866
  12. Rentier-Delrue, F., D. Swennen, J.C. Philippart, C. L'Hoir, M. Lion, O. Benrubi and J.A. Martial. 1989. Tilapia growth hormone: molecular cloning of cDNA and expression in Escherichia coli. DNA, 8, 271-278 https://doi.org/10.1089/dna.1.1989.8.271
  13. Saito, A., S. Sekine, Y. Komatsu, M. Sato, T. Hirano and S. Itoh. 1988. Molecular cloning of eel growth hormone cDNA and its expression in Escherichia coli. Gene, 73, 545-551 https://doi.org/10.1016/0378-1119(88)90519-7
  14. Sato, N., K. Watanabe, K. Murata, M. Sakaguchi, Y. Kariya, S. Kimura, M. Nonaka and A. Kimura. 1988. Molecular cloning and nucleotide sequence of tuna growth hormone cDNA. Biochim. Biophys. Acta, 949, 35-42 https://doi.org/10.1016/0167-4781(88)90051-6
  15. Seeburg, P.H., J. Shine, J.A. Martial, J.D. Baxter and H.M. Goodman. 1977. Nucleotide sequence and amplification in bacteria of structural gene for rat growth hormone. Nature, 270, 486-494 https://doi.org/10.1038/270486a0
  16. Sekine, S., T. Mizukami, T. Nishi, Y. Kawana, A. Saito, M. Sato, S. Itoh and H. Kawauchi. 1985. Cloning and expression of cDNA for salmon growth hormone in the Escherichia coli. Proc. Nat'l. Acad. Sci., USA, 82, 4306-4310 https://doi.org/10.1073/pnas.82.13.4306
  17. Selby, M.J., A. Barta, J.D. Baxter, G.I. Bell and N.L. Eberhardt. 1984. Analysis of a major human chorionic somatomammotropin gene. Evidence for two functional promoter elements. J. Biol. Chem., 259, 13131-13138
  18. Shine, J., P.H. Seeburg, J.A. Martial, J.D. Baxter and H.M. Goodman. 1977. Construction and analysis of recombinant DNA for human chorionic somatornammotropin. Nature, 270, 494-499 https://doi.org/10.1038/270494a0
  19. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res., 17, 6463-6471 https://doi.org/10.1093/nar/17.16.6463
  20. Tautz, D. and M. Renz. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res., 12, 4127-4138 https://doi.org/10.1093/nar/12.10.4127
  21. Vestling, M., C. Murphy, C. Fenselau and T.T. Chen. 1991. Disulfide bonds in native and recombinant fish growth hormones. Mol. Mar. Biol. Biotechnol., 1, 73-77
  22. Watahiki, M., M. Tanaka, N. Masuda, M. Yamakawa, Y. Yoneda and K. Nakashima. 1988. cDNA cloning and primary structure of yellow tail (Seriola quinqueradiata) pregrowth hormone. Gen. Compo. Endocrinol., 70, 401-406 https://doi.org/10.1016/0016-6480(88)90114-1
  23. Watahiki, M., M. Yamamoto, M. Yamakawa, M. Tanaka and K. Nakashima. 1989. Conserved and unique amino acid residues in the domains of the growth hormones. Flounder growth hormone deduced from the cDNA sequence has the minimal size in the growth hormone prolactin gene family. J. Biol, Chem., 264, 312-316
  24. Yowe, D.L. and R.J. Epping. 1996. A minisatellite polymorphism in intron III of the barramundi (Lates calcarifer) growth hormone gene. Genome, 39, 934-940 https://doi.org/10.1139/g96-117