DOI QR코드

DOI QR Code

옥수수 가공방법이 In sacco 전분 및 단백질 분해율에 미치는 영향

The Effects of Processing Methods of Corn on In sacco Starch and Protein Degradability in the Rumen

  • 손근남 (충남대학교 동물자원학부) ;
  • 김용국 (충남대학교 동물자원학부) ;
  • 이수기 (충남대학교 동물자원학부) ;
  • 김현섭 (농촌진흥청 축산기술연구소)
  • Son, K.N. (Devision of Animal Science & Resources, Chungnam National University) ;
  • Kim, Y.K. (Devision of Animal Science & Resources, Chungnam National University) ;
  • Lee, S.K. (Devision of Animal Science & Resources, Chungnam National University) ;
  • Kim, H.S. (National Livestock Research Institute)
  • 발행 : 2003.06.30

초록

옥수수 알곡의 무처리(통 옥수수 2종) 및 가공방법(분쇄, flake 3.8mm, 2.8mm 및 1.5mm)이 in sacco 방법에 있어 반추위 내에서의 전분 및 단백질 분해율에 미치는 영향을 측정하고자 반추위에 캐뉼라(cannulae)가 장착된 홀스타인종 건유우 3두를 공시축으로 하여, 본 시험을 수행하였는데 그 결과를 요약하면 다음과 같다. 1)48시간대에서의 전분 분해율은 1.5mm, 2.8mm flake, 분쇄 옥수수, 3.8mm flake, density 660g/$\ell$, density 740 g/$\ell$인 통 옥수수 순으로 높았다. Flake의 가공정도를 증진시키면, 즉 3.8mm에서 2.8mm로 얇게 가공하면 전분 분해율이 유의하게 증가되었으며, 1.5mm로 더욱 얇게 가공하면 2.8mm 보다 증가하는 경향을 보였으나 유의적인 차이는 없었다(P<0.05). 12시간대에서 24시간대까지는 density가 낮은 통 옥수수가 높은 것보다 많이 분해되는 경향을 보였으나, 유의적인 차이가 없었고, 48시간대에서는 유의하게 높았다(P<0.05). 2) 단백질 분해율은 반추위내 배양시간이 경과함에 따라 모두 증가하는 경향이었다. 48시간대에서의 단백질 분해율은 분쇄 옥수수, 1.5 mm, 2.8mm, 3.8mm flake의 순으로 높았다(P<0.05). Flaking 처리시의 단백질 분해율은 분쇄 옥수수보다 유의하게 낮아졌으나, 8${\sim}$48시간대에서는 2.8mm, 1.5mm로 가공정도를 증진시킬수록 높아지는 경향이었다. 3) “a”값, 즉 물에 녹는 수용성 부분을 계산한 결과, 단백질의 “a”값은 flake가 분쇄 옥수수보다 유의하게 낮았다. 반면에 전분의 “a”값은 flake가 분쇄 옥수수보다 높았다. 곡류를 flaking 처리하면 전분이 젤라틴화 되어, 반추위 내에서 전분 분해속도는 증가되고, 단백질 분해속도는 감소되기 때문이라고 생각된다. 이와 같이 사료원료의 물리적 특성은 반추위내 배양시간별 영양소 이용율에 양향을 미친다. 그러므로, 반추가축 사료에 이용되는 원료들의 이와 같은 분해특성을 적절히 고려하면 단백질원과 탄수화물원의 반추위내 발효 동기화를 보다 최적화할 수 있을 것이다.

The objective of this study was to examine the effects of processing methods of corn grains on protein and starch degradability in the rumen by three ruminally cannulated dry Holstein cows. The corns for these experiments were untreated; whole corn L(density; 660 g/$\ell$), whole corn H(density; 740 g/$\ell$), and treated by four different types: Ground corn, 3.8 mm, 2.8 mm, and 1.5 mm flaked corn. The results obtained were summarized as follows: For 48 hrs, the protein degradabilities were high in order, ground corn, 1.5 mm, 2.8 mm, and 3.8 mm flaked corn(82.6, 76.5, 64.5, and 33.9%, respectively). Flaked corn grains were degraded lower than ground corn. However, as increasing the processing degree of flaking, the protein degradabilities, from 4 hrs to 48 hrs, were increased. The starch degradabilities on 48 hrs were higher in 1.5 and 2.8 mm flaked corns, ground corn, 3.8 mm flaked corn(99.1, 91.5, 89.5, and 68.9%, respectively) than whole corn L(32.0%) and whole corn H(20.5%)(P<0.05). By increasing the processing degree of flaking, the protein degradabilty between 2.8 mm and 3.8 mm was increased significantly from 68.9% to 91.5%, however, that of 1.5 mm flaked corn, processed thinner, tended to be increased slightly, but was not significantly different. From 12 hrs to 24 hrs, whole corn L was degraded little more than whole corn H in starch, was not significantly different. However, after 48 hr incubation in the rumen, whole corn L was degraded more 50% than whole corn H(P<0.05). The value of degradation parameter “a” of protein was lower in all flaked corns than in ground corn. In contrast, the value of degradation parameter “a” of starch was significantly higher in all flaked corns than in ground corn(P<0.05). It seemed that by flaking the corn grains, starch particles were gelatinized, and then, starch was degraded more rapidly, while protein was degraded more slowly. Referring to these kinds of physical characteristics of grain sources in ruminal degradabilities, it is possible to synchronize the fermentation of nitrogen and carbohydrate sources, in formulating the cattle diets.

키워드

참고문헌

  1. Alio, A., Theurer, C. B., Lozano, O., Huber, J. T., Swingle, R. S., Delgado-Elorduy, A., Cuneo, P., DeYoung, D. and Webb, Jr. K. E. 2000. Splanchnic nitrogen metabolism by growing beef steers fed diets containing sorghumgrainsflaked at different densities. J. Anim. Sci. 78:1355. https://doi.org/10.2527/2000.7851355x
  2. AOAC. 1990. Official methods of analytical chemists., Washington, D.C., U.S.A.
  3. Brown, M. S., Krehbiel, C. R., Galyean, M. L., Remmenga, M. D., Peters, J. P., Hibbard, B., Robinson, J. and Moseley, W. M. 2000a. Evaluation of models of acute and subacute acidosis on dry matter intake, ruminal fermentation, bloodchemistry, and endocrine profiles of beef steers. J. Anim. Sci. 78:3155. https://doi.org/10.2527/2000.78123155x
  4. Brown, M. S., Krehbiel, C. R., Duff, G. C., Galyean, M. L., Hallford, D. M. and Walker, D. A. 2000b. Effect of degree of corn processing on urinary nitrogen composition, serum metabolite and insulin profiles, and performancebyfinishing steers. J. Anim. Sci. 78:2464. https://doi.org/10.2527/2000.7892464x
  5. Callison, S. L., Firkins, J. L., Eastridge, M. L. and Hull, B. L. 2001. Site of nutrient digestion by dairy cows fed corn of different particle sizes or steam-rolled. J. Dairy Sci. 84:1458. https://doi.org/10.3168/jds.S0022-0302(01)70179-8
  6. Duncan, D. B. 1955. Multiple range and multiple F tests. Biometrics. 11:1. https://doi.org/10.2307/3001478
  7. Fiems, L. O., Cottyn, B. G., Ch. Boucque, V., Vanacker, J. M. and Buysse, F. X. 1990. Effect of grain processing on in sacco digestibility and degradability in the rumen. Arch. Anim. Nutri. 40:713. https://doi.org/10.1080/17450399009428420
  8. Focant, M. A., Van Hoecke and Vanbelle, M. 1990. Influence of steam flaking wheat on rumen fermentations and duodenal nitrogen and amino acids flows in heifers. Anim. Feed Sci. Tech. 30:69. https://doi.org/10.1016/0377-8401(90)90052-A
  9. Fredrick, H. M., Threurer, B. and Hale, W. H. 1973. Effect of moisture, pressure and temperature on enzymatic starch degradation of barley and sorghum grains. J. Dairy Sci. 56:595. https://doi.org/10.3168/jds.S0022-0302(73)85225-7
  10. Lozano, O., Theurer, C. B., Alio, A., Huber, J. T., Delgado-Elorduy, A., Cuno, P., DeYoung, D., Sadik, M. and Swingle, R. S. 2000. Net absorption and hepartic metabolism of glucose, l-lactate, and volatile fatty acids bysteersfeddiets containing sorghum grains processed as dry-rolled or steam-flaked at different densities. J. Anim. Sci. 78:1364. https://doi.org/10.2527/2000.7851364x
  11. Marquadt, W. 1963. An algorithm for least squares estimation of nonlinear parameters. Soc. Ind. Appl. Math. 11:431. https://doi.org/10.1137/0111030
  12. NRC. 1984. Ruminant nitrogen usage(6th Ed.). National Academy Press, Washington, D.C., USA.
  13. NRC. 2001. Protein and amino acids(7th Ed.). National Academy Press, Washington, D.C., USA.
  14. Orskov. E. R. and MacDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agri. Camb. 92:499. https://doi.org/10.1017/S0021859600063048
  15. Owens. F. N., Zinn, R. A. and Kim. Y. K. 1986. Limits to starch digestion in the ruminant small intestine. J. Animi. Sci. 63:1634. https://doi.org/10.2527/jas1986.6351634x
  16. Philippeau. C., Le Deschault de Monredon, F. and Michalet-Doreau, B. 1999. Relationship between ruminal starch degradation and the physical characteristics of corn grains. J. Anim. Sci. 77: 238.
  17. SAS. 1988. User's Guide: Statistics. SAS Inst. Inc., Carry, NC, USA.
  18. Sniffen. C. J., O'Connor. J. D., Van Soest, P. J., Fox. D. G. and Russell, J. B. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562. https://doi.org/10.2527/1992.70113562x
  19. Theurer. C. B., Lozano, O., Alio, A., Delgado-Elorduy, A., Sadik, M., Huber, J. T. and Zinn, R. A. 1999. Steam-processed corn and sorghum grain flaked at different densities alter ruminal, small intestinal. and total tract digestibility of starch by steers. J. Anim. Sci. 77:2824. https://doi.org/10.2527/1999.77102824x
  20. Van Keuren. R. W. and Heineman, W. W. 1662. Study of a nylon bag technique for in vivo estimation of forage digestibility. J. Anim. Sci. 21:340.
  21. Volden, H. 1999. Effects of level of feeding and ruminally undegraded protein on ruminal bacterial protein synthesis, escape of dietary protein. intestinal amino acid profile, and performance of dairy cows. J. Anim. Sci. 77:1905. https://doi.org/10.2527/1999.7771905x
  22. Xiong, Y., Bartle, S. J. and Preston, R. L. 1991. Density of steam-flaked sorghum grains, roughage level and feeding regimen for feedlot steers. J. Anim. Sci. 69:1707. https://doi.org/10.2527/1991.6941707x
  23. Zinn, R. A. 1990a. Influence of flake density on the comparative feeding value of steam-flaked corn for feedlot cattle. J. Anim. Sci. 68:767. https://doi.org/10.2527/1990.683767x
  24. Zinn, R. A. 1990b. Influence of steaming time on the site of digestion of flaked corn in steers. J. Anim. Sci. 68:776. https://doi.org/10.2527/1990.683776x
  25. 한국축산연감. 2002. 농수축산신문.