DOI QR코드

DOI QR Code

Effects of Full-Fat Soybeans and Linseed as Dietary Fat Sources on In Vitro Ruminal Disappearances of Dry Matter and C18-Unsaturated Fatty Acids and Fatty Acids Profile

지방원으로 전지대두와 아마종실의 첨가가 반추위내 건물과 C18계-불포화지방산의 조성과 소실율에 미치는 영향

  • Lee, S.H. (Dept. of Nutritional Resources Science, College of Animal Husbandry, Konkuk University) ;
  • Choi, N.J. (School of Agricultural Biotechnology, Seoul National university) ;
  • Maeng, W.J. (Dept. of Nutritional Resources Science, College of Animal Husbandry, Konkuk University)
  • 이성훈 (건국대학교 축산대학 영양자원학과) ;
  • 최낙진 (서울대학교 농생명공학부) ;
  • 맹원재 (건국대학교 축산대학 영양자원학과)
  • Published : 2003.06.30

Abstract

This study was conducted to investigate the effects of dietary full-fat soybeans and linseed as fat sources on in vitro ruminal disappearances of dry matter and unsaturated fatty acids and fatty acids profile. The full-fat soybeans and linseed were high in linoleic acid (C18:2n-6) and $\alpha$-linolenic acid (C18:3n-3), respectively. The incubation times were 0, 3, 6, 12, 24, 48 and 72 h. After each time of incubation, medium digesta was lyophilized for analyzing its DM and fatty acids contents. DM disappearance was significantly higher in linseed treatment compared to full-fat soybeans treatment on 6 h (p<0.01), 12 h (p<0.05) and 24 h (p<0.01), but cumulative gas production was not significantly different between both treatments. Stearic acid (C18:0) content in medium digesta was increased in both soybeans and linseed as a result of complete biohydrogenation with increased incubation time and C18:0 and C18:1 contents of full-fat soybeans were significantly higher than those of linseed (p<0.05). The content of C18:2 and C18:3 in digesta of each treatment were decreased by biohydrogenation as incubation time was increased. The content of C18:2 in full-fat soybeans was significantly higher than that of linseed (p<0.05) while the content of C18:3 in linseed was significantly higher than that of full-fat soybeans (p<0.001). Net C18:0 production was significantly higher in full-fat soybeans (332.24%) than linseed (133.16%) on 72 h. Disappearance of C18:1 was significantly lower in full-fat soybeans than linseed (p<0.05), especially full-fat soybeans showed negative (-) values on 3, 6, 12 and 24 h. The disappearance of C18:3 was significantly higher in linseed than full-fat soybeans (p<0.05). The disappearance of C18-unsaturated fatty acid was significantly higher in linseed than full-fat soybeans. In conclusion, polyunsaturated fatty acid (PUFA) in both full-fat soybeans and linseed were extensively biohydrogenated. In addition, biohydrogenation of PUFA was more completed to C18:0 in full-fat soybeans than linseed, reflecting dietary PUFA composition.

본 연구는 불포화지방산원으로서 C18:2n-6이 풍부한 전지대두와 C18:3n-3이 풍부한 아마종실을 반추동물사료에 18% 배합하였을 때 반추위내 건물소실율과 불포화지방산 소실율 및 조성을 조사하기 위해 in vitro 배양장치에서 실시하였다. 배양시간은 0, 3, 6, 12, 24, 48, 72시간에 걸쳐 실시하였고, 배양 종료 후 각각의 medium digesta는 동결 건조하여 건물과 각 지방산 함량을 분석하였다. 배양 3시간까지는 전지대두와 아마종실의 건물소실율에 차이가 없었으나, 배양 6시간이후부터는 아마종실이 전지대두보다 유의한 증가를 나타내었다 (p< 0.01). 하지만, 배양 48시간이후부터는 두 처리구간에 유의차가 나타나지 않았다 (p>0.05). 한편 가스생성량은 건물소실율과 비슷한 양상을 나타내어 아마종실이 전지대두보다 발효산물인 가스를 보다 많이 생성하나 두 처리구간에 유의한 차이는 나타나지 않았다(p>0.05). C18:0 함량은 배양시간이 증가함에 따라 전지대두와 아마종실 공히 증가하였고, 전지대두가 아마종실 보다 유의하게 높았다(p<0.05). C18:1 조성은 전지대두가 아마종실구보다 유의하게 증가하였다(p<0.05). C18:2와 C18:3의 digesta내 조성은 반추위내 수소첨가현상으로 배양시간이 증가함에 따라 감소하였다. Digesta내 C18:2 함량은 C18:2가 풍부한 전지대두가 아마종실에 비하여 유의하게 증가하였고(p<0.05), C18:3 함량은 C18:3이 풍부한 아마종실이 전지대두에 비하여 유의하게 증가하였다 (p<0.001). 순수 C18:0 생산량 (%)은 C18:2n-6 함량이 풍부한 전지대두가 배양종료 후 332.24%로 아마종실의 133.16%보다 유의하게 증가하였다 (p<0.05). C18:1 소실율은 전지대두가 아마종실보다 유의하게 낮았고 (p<0.05), 특히 배양 3, 6, 12, 24시간에서 전지대두 처리구가 음 (-)값을 나타내었다. C18:2의 소실율은 배양시간이 증가함에 따라 증가하였고, 배양 72시간에 두 처리구 평균 93.31%로 광범위하게 소실되었으나, 처리구간 유의차는 나타나지 않았다 (p>0.05). C18:3 소실율은 C18:2 소실율과 마찬가지로 배양시간이 증가함에 따라 증가하였으며, 특히 아마종실이 전지대두에 비하여 배양 6시간이후부터 유의하게 증가하였다(p<0.05). C18계 불포화지방산 소실율은 아마종실이 전지대두보다 유의하게 높았다 (p<0.05). 이상의 결과로부터 전지대두와 아마종실은 반추동물의 식품 내 유익한 불포화지방산이 침착하는데 충분한 가치가 있는 불포화지방산원이었고, C18계 불포화지방산은 반추위내에서 광범위하게 수소첨가되었다. 아울러 전지대두는 아마종실보다 complete biohydrogenation이 증가하였고, digesta 내 불포화지방산 함량은 사료 중 불포화지방산 함량과 밀접한 관계가 있었다.

Keywords

References

  1. AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC.
  2. Barlow, S. M., Young, F. V. K. and Duthie, I. F. 1990. Nutritional recommendations for n-3 polyunsaturated fatty acids and the challenge to food industry. Proceedings of the Nutrition Society. 49:13-21. https://doi.org/10.1079/PNS19900004
  3. Broderick, G. A., Wallace, R. J., Orskov, E. R. and Hansen, L. 1988. Comparison of estimates of ruminal protein degradation by in vitro and in situ methods. J. Anim. Sci. 66:1739-1745. https://doi.org/10.2527/jas1988.6671739x
  4. Choi, N. J., Enser, M., Wood, J. D. and Scollan, N. D. 2000. Effect of breed on the deposition in beef muscle and adipose tissue of dietary n-3 polyunsaturated fatty acids. Anim. Sci. 71:509-519. https://doi.org/10.1017/S1357729800055417
  5. Clinquart, A., Istasse, L., Dufrasne, I., Mayombo, A., van Eenaeme, C. and Bienfait, J. M. 1991. Effects on animal performance and fat composition of two fat concentrates in diets for growing-fattening bulls. Anim. Prod. 53:315-320. https://doi.org/10.1017/S0003356100020316
  6. Davies, D. R., Theodorou, M. K., Lawrence M. I. G. and Trinci. A. P. J. 1993. Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces. J. Gen. Microbiol. 139:1395-1400. https://doi.org/10.1099/00221287-139-6-1395
  7. Dhiman, T. R., Anand, G. R., Satter, L. D. and Pariza, M. W. 1999. Conjugated linoleic acid content of milk from cows fed different diets. J. Dairy Sci. 82:2146-2156. https://doi.org/10.3168/jds.S0022-0302(99)75458-5
  8. Doreau, M. and Ferlay, A. 1994. Digestion and utilization of fatty acids by ruminants. Anim. Feed Sci & Technol. 45:379-396. https://doi.org/10.1016/0377-8401(94)90039-6
  9. Elmeddah, Y., Doreau, M. and Michalet-Doreau. B. 1991. Interaction of lipid supply and carbohydrates in the diet of sheep with digestibility and ruminal digestion. J. Agric. Sci., 116:437-445. https://doi.org/10.1017/S0021859600078254
  10. Enjalbert, F., Nicot, M. C., Vernay, M., Moncoulon, R. and Griess, D. 1994. Effect of different forms of polyunsaturated fatty acids on duodenal and serum fatty acid profiles in sheep. Can. J. Anim. Sci. 74:595-600. https://doi.org/10.4141/cjas94-087
  11. Griinari, J. M., Dwyer, D. A., McGuire, M. A. and Bauman, D. E. 1996. Partially hydrogenated fatty acids and milk fat depression. J. Dairy Sci. 79 (suppl. 1):177 (abs.).
  12. Harfoot, C. G. and Hazelwood, G. P. 1988. Lipid metabolism in the rumen. Pages 285-322 in The Rumen Microbial Ecosystem. P. N. Hobson, ed. Elsevier Applied Sci. Publishers, London.
  13. Hogan, J. P., Connell, P. J. and Mills, S. C. 1972. The digestion of safflower oil casein particles protected against ruminal hydrogenation in sheep. Aust. J. Agric. Res. 23:87-95. https://doi.org/10.1071/AR9720087
  14. Ikwuegbu, O. A. and Sutton, J. D. 1982. The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr. 48:365-375. https://doi.org/10.1079/BJN19820120
  15. Jenkins, T. C. 1993. Lipid metabolism in the rumen. J. Dairy Sci. 76:3851-3863. https://doi.org/10.3168/jds.S0022-0302(93)77727-9
  16. Kelly, M. L., Kolver, E. S., Bauman, D. E., Van Amburgh, M. E. and Muller, L. D. 1998a. Effect of intake of pasture on concentrations of conjugated linoleic acid in milk of lactating cows. J. Dairy Sci. 81:1630-1636. https://doi.org/10.3168/jds.S0022-0302(98)75730-3
  17. Kelly, M. L., Berry, J. R., Dwyer, D. A., Griinari, J. M., Chouinard, P. Y., Van Amburgh, M. E. and Bauman, D. E. 1998b. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J. Nutr. 128:881-885.
  18. Kucuk, O., Hess, B. W., Ludden, P. A. and Rule, D. C. 2001. Effect of forage:concentrate ratio on ruminal digestion and duodenal flow of fatty acids in ewes. J. Anim. Sci. 79:2233-2240. https://doi.org/10.2527/2001.7982233x
  19. Madron, M. S., Peterson, D. G., Dwyer, D. A., Corl, B. A., Baumgard, L. H., Heermann, D. H. and Bauman, D. E. 2002. Effect of extruded full-fat soybeans on conjugated linoleic acid content of intramuscular, intermuscular, and subcutaneous fat in beef steers. J. Anim. Sci. 80:1135-1143. https://doi.org/10.2527/2002.8041135x
  20. McGuire, M. A., McGuire, M. K., Guy, M. A., Sanchez, W. K., Shultz, T. D., Harrison, L. Y., Bauman, D. E. and Griinari, J. M. 1996. Effect of dietary lipid concentration on content of conjugated linoleic acid (CLA) in milk from dairy cattle. J. Anim. Sci. 74 (suppl. 1):266 (abs.).
  21. Mosley, E. E., Powell, G. L., Riley, M. B. and Jenkins, T. C. 2002. Microbial biohydrogenation of oleic acid to trans isomers in vitro. J. Lipid Res. 43:290-296.
  22. NRC. 2001. Nutrient requirements of dairy cattle. 7th revised edition. National academy press, Washington, DC.
  23. Palmquist, D. L. and Jenkins, T. C. 1980. Fat in lactation rations: review. J. Dairy Sci. 63:1-14. https://doi.org/10.3168/jds.S0022-0302(80)82881-5
  24. Petit, H. V. 2002. Digestion, milk production, milk composition, and blood composition of dairy cows fed whole flaxseed. J. Dairy Sci. 85:1482-1490. https://doi.org/10.3168/jds.S0022-0302(02)74217-3
  25. Sargent, J. R. and Henderson, R. J. 1995. Marine (n-3) polyunsaturated fatty acids. In Developments in Oils and Fats (Ed. R. J. Hamilton), pp. 32-65. London: Blackies Academic and Professional.
  26. SAS User's Guide:Statistics, release. 8.1 version Edition, 2000. SAS Inst., Inc. Cary, NC.
  27. Scollan, N. D., Dhanoa, M. S., Choi, N. J., Maeng, W. J., Enser, M. and Wood, J. D. 2001a. Biohydrogenation and digestion of long chain fatty acids in steers fed on different sources of lipid. J. Agric. Sci. 136:345-355.
  28. Scollan, N. D., Choi, N-J., Kurt, E., Fisher, A. V., Enser, M. and Wood, J. D. 2001b. Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br. J. Nutr. 85:115-124. https://doi.org/10.1079/BJN2000223
  29. Sukhija, P. S. and Palmquist, D. L. 1988. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 36:1202-1206. https://doi.org/10.1021/jf00084a019
  30. Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., France, J. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. feed Sci. & Tech. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  31. Van Nevel. C. J. and Demeyer, D. I. 1996. Effect of pH on biohydrogenation of polyunsaturated fatty acids and their Ca-salts by rumen micro-organisms in vitro. Arch. Anim. Nutr., 49:151-157. https://doi.org/10.1080/17450399609381873
  32. Wu, Z., Ohajuruka, O. A. and Palmquist, D. L. 1991. Ruminal synthesis, biohydrogenation. and digestibility of fatty acids by dairy cows. J. Dairy Sci. 74:3025-3034. https://doi.org/10.3168/jds.S0022-0302(91)78488-9

Cited by

  1. Effects of full-fat soybean diet on performance, carcass characteristics,and fatty acid composition of Hanwoo steers vol.40, pp.13036181, 2016, https://doi.org/10.3906/vet-1508-12