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Abstract

In this paper, we propose a randomized response model with discrete 
quantitative attribute by three-stage cluster sampling for obtaining 
discrete quantitative data by using the Liu & Chow model(1976), when 
the population was made up of sensitive discrete quantitative clusters. We 
obtain the minimum variance by calculating the optimum number of fsu, 
ssu, tsu under the some given constant cost. And we obtain the minimum 
cost under the some given accuracy.
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1. Introduction

One of the most interest in socioeconomic investigations is to reduce non- 

sampling errors which can be arisen due to the evasive or untruthful answers. 

These errors are increasing when the more respondents are to be asked the 

sensitive questions.

A simple technique involving the use of a randomized response rather than a 

direct one was introduced by Warner(1965). He has proposed an indirect survey 

method called randomized response model (RRM) to procure trustworthy 

information about sensitive data from the respondents in sample survey. He has 

estimated the sensitive population proportion by using the data collected from 
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randomization device which was composed of sensitive and nonsensitive question.

Since then, many scientists have improved the method and developed new ones.

In the Warner model, the two questions relate to groups that are perfectly 

negatively associated. Greenberg et al.(1971) suggested a quantitative unrelated 

question model by modifying the unrelated question model(1969) which had 

extended the Warner model by extending the two related groups to unrelated 

ones. But his method has several difficulties in choosing the unrelated question 

that has the same mean and variance to those for sensitive question.

Liu & Chow(1976) suggested a randomized response model to deal with discrete 

quantitative cases. 

Since Warner, the RRMs which have been suggested and applied in field survey 

based on sample selected by SRS(simple random sampling) from simple population. 

However those RRM methods require more efforts and cost than those of direct 

methods, especially the populations considered in field are usually large and have 

complex structure.

To solve those difficulties and problems, Lee and Hong(1998) suggested a 

two-stage cluster randomized response model for estimating the proportion of 

people with a sensitive characteristic when the population was composed of 

several clusters. Recently, a field survey for the sensitive character such as the 

feeling of sexual impulse has been executed through a three-stage cluster 

randomized response technique by Lee et al.(2003). The question was that "Have 

you ever felt sexual drive to coed?". They assumed 10 medium-sized universities 

of 6,000 students each other in Cholla province, each university has three colleges 

of Natural Science, Humanities and Social Science, and Arts and Physical 

Training. They also assumed that each college equally has 2,000 students. Since 

the number of students of each college was too large to survey by two-stage 

cluster sampling they applied three-stage cluster sampling to select ultimate 50 

students from each college of 2,000 students and obtained responses by applying 

randomized response model to them. 

We can see that three-stage cluster sampling may have more practical 

applications than two-stage cluster sampling in field work. While Lee et al.(2003) 

dealt with only qualitative questions for sensitive characters it is necessary to 

study discrete quantitative ones for them.

In this article a three-stage discrete quantitative randomized response model 

which apply Liu & Chow's technique to the ultimate sampling unit, the third 

sampling unit(tsu), is considered to estimate the sensitive population proportion 

and variance from a complex population which is composed of several clusters. 

We assume that each sample is selected by SRSWOR(simple random sampling 

without replacement). We derive both optimal values of first sampling unit(fsu), 

second sampling unit(ssu), and third sampling unit(tsu) to minimize variance for a 

specified cost, and ones to minimize cost function for a specified precision.
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2. Randomized Response Model with Discrete Quantitative 

Attribute by Three-Stage Cluster Sampling

2.1. proposed model

In this section we are to estimate the sensitive proportion of population when it 

is composed of several clusters of containing a sensitive attribute by using three 

stage RRM which apply Liu & Chow's technique to the ultimate sampling unit.

Let the number of fsu be N , the number of ssu in the i ( i = 1, 2,…,N )th 

fsu be M , and the number of tsu in the j ( j = 1, 2,…,M )th ssu of the 

i ( i = 1, 2,…,N )th fsu be K . The corresponding numbers for the sample are 

n, m  and k , respectively.

The ultimate respondents selected by three-stage cluster sampling answer to the 

result of the Liu & Chow's randomization device. Each respondent is asked to 

turn the device upside down, shake the device throughly, and turn it right side up 

to allow one of the balls to appear in the window of the device. The ball in the 

window will either be red or white. If it is a red ball, the respondent will be 

asked to answer the sensitive question. If the ball is white, there will be a 

number marked on its surface, and the respondent simply tells the number. The 

answers will again be 0, 1,…, s,  depending on the number marked on the 

surface of the white ball. Interviewers standing opposite the respondents do not 

know which color appeared in the window of the device, and, therefore, do not 

know if the respondents have experienced the sensitive event in the question.

Let w t  represent the number of white balls marked t ( t=0,1,2,…,s) , and r  

represents the number of unmarked red balls, then the total number of balls in the 

device is r+ w  where w= ∑
s

t=0
wt .

The probability λ ij( t)  of response t ( t=0,1,2,…,s)  of the l ( l = 1,2,…,K )th 

respondent in the j ( j = 1, 2,…,M )th ssu drawn from the i ( i = 1,2,…,N )th 

fsu, is given by 

λ ij( t) = π ij( t) ( r
r+w ) +

wt
r+w

,                        (2.1)

where π ij( t)  is the population proportion of respondents who possess t  

quantitative measure in the j th ssu drawn from the i th fsu, and can be written 

as

π ij( t) =
1
K ∑

K

l=1
x ijl( t) .
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If z ij( t) = ∑
k

l=1
z ijl( t)  represent the number of response t ( t=0,1,2,…,s)  of the 

l ( l = 1,2,…,K )th respondent in the j ( j = 1, 2,…,M )th ssu drawn from the 

i ( i = 1,2,…,N )th fsu, λ̂ ij ( t )  is given by λ̂ ij ( t )=
z ij( t)
k

, and from the equation 

(2.1) the estimator of π ij( t) , π̂ ij ( t )  can be written as

π̂ ij ( t )=
(r+w) λ̂ ij ( t )

r
-
wt
r
.                        (2.2)

The variance and covariance of π̂ ij ( t )  are 

V( π̂ ij ( t )) = ( (r+w)/r)
2 λ ij( t)(1-λ ij( t)) /k ,                   (2.3)

Cov( π̂ ij ( t ), π̂ ij ( u )) = -( (r+w)/r)
2λ ij( t)λ ij(u)/k .               (2.4)

The population proportion π ( t)  of respondents who possess t  quantitative 

measure is 

π ( t) =
1
N ∑

N

i=1
π i( t) ,                             (2.5)

where π i( t)  is the population proportion of respondents who possess t  quantitative 

measure in the i th fsu, and can be written as 

π i( t) =
1
M ∑

M

j=1
π ij( t) .                            (2.6)

The estimator π̂ ( t )  of π ( t)  is given by

π̂ ( t ) =
1
nm ∑

n

i=1
∑
m

j=1
π̂ ij ( t ) .                       (2.7)

Theorem 1. The estimator π̂ ( t )  is unbiased estimator of π ( t) .

Proof.

E( π̂ ( t ) ) = E 1E 2E 3 ( 1nm ∑
n

i=1
∑
m

j=1
π̂ ij ( t ) )

= E 1E 2 ( 1nm ∑
n

i=1
∑
m

j=1
π ij( t) )

= E 1 ( 1n ∑
n

i=1
π i( t) )

= π ( t) .

Theorem 2. If we assume SRSWOR at each stage, the variance of π̂ ( t )  is
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V( π̂ ( t ) ) = (1- f 1 )
1

n(N-1) ∑
N

i=1
(π i( t)-π ( t) )

2

+ (1- f 2 )
1

nmN(M-1) ∑
N

i=1
∑
M

j=1
(π ij( t)-π i( t) )

2

+ (1- f 3 )
( (r+w)/r) 2

nmkNM ∑
N

i=1
∑
M

j=1
λ ij( t)(1-λ ij( t)) ,

        (2.8)

where f 1 =
n
N
, f 2 =

m
M
, f 3 =

k
K
.

Proof.

Since V( π̂ ( t ) ) = V 1E 2E 3( π̂ ( t ) ) + E 1V 2E 3( π̂ ( t ) ) + E 1E 2V 3( π̂ ( t ) ) ,

      
V 1E 2E 3( π̂ ( t ) ) = V 1E 2 ( 1nm ∑

n

i=1
∑
m

j=1
π ij( t) )

= (1- f 1 )
1

n(N-1) ∑
N

i=1
(π i( t)-π ( t) )

2 ,

      
E 1V 2E 3( π̂ ( t ) ) = E 1V 2 ( 1nm ∑

n

i=1
∑
m

j=1
π ij( t) )

= (1- f 2 )
1

nmN(M-1) ∑
N

i=1
∑
M

j=1
(π ij( t)-π i( t) )

2

and

        
E 1E 2V 3( π̂ ( t ) ) = E 1E 2V 3( 1nm ∑

n

i=1
∑
m

j=1
π̂ ij ( t ) )

= (1- f 3 )
( (r+w)/r) 2

nmkNM ∑
N

i=1
∑
M

j=1
λ ij( t)(1-λ ij( t)) .

We can see that the variance of π̂ ( t )  is given as (2.8).

Theorem 3. The unbiased estimator of V( π̂ ( t ) )  is

V (̂ π̂ ( t )) =
1- f 1
n

1
n-1 ∑

n

i=1
( π̂ i ( t )- π̂ ( t ))

2

+
f 1(1-f 2 )

nm
1

n(m-1) ∑
n

i=1
∑
m

j=1
( π̂ ij ( t )- π̂ i ( t ))

2

+
f 1f 2(1-f 3 )

nmk
( (r+w)/r) 2

nm ∑
n

i=1
∑
m

j=1
λ̂ ij ( t )(1- λ̂ ij ( t )) ,

    (2.9)

where π̂ i ( t )=
1
m ∑

m

j=1
π̂ ij ( t ) .



Gi Sung Lee ․ Ki Hak Hong1072

Proof.

Before complete proof, we first show that E [ 1
n-1 ∑

n

i=1
( π̂ i ( t )- π̂ ( t ) )

2 ]  is 

described as follows.

E [ 1
n-1 ∑

n

i=1
( π̂ i ( t )- π̂ ( t ))

2] = 1
N-1 ∑

N

i=1
(π i( t)-π ( t))

2

  +
1- f 2
m

1
N(M-1) ∑

N

i=1
∑
M

j=1
(π ij( t)-π i( t))

2

  +
1- f 3
mk

( (r+w)/r) 2

NM ∑
N

i=1
∑
M

j=1
λ ij( t)(1-λ ij( t)) .

(2.10)

If we define π̂ iK ( t )  as the sample proportion of sensitive attribute t  over m  

ssu's in the i th fsu given that all K  tsu's were enumerated, then 

π̂ iK ( t )=
1
m ∑

m

j=1
π ij( t) , and π̂K ( t )=

1
n ∑

n

i=1
π̂ iK ( t ) .

Then from the two-stage sampling, we can show that

E [ 1
n-1 ∑

n

i=1
( π̂ iK ( t )- π̂K ( t ))

2] = 1
N-1 ∑

N

i=1
(π i( t)-π ( t))

2

  +
1-f 2
m

1
N(M-1) ∑

N

i=1
∑
M

j=1
(π ij( t)-π i( t))

2 .

(2.11)

Now, if π̂ i ( t )  is the sample proportion of sensitive attribute t  for the ith fsu, 

( π̂ i ( t )- π̂ ( t ) ) = ( π̂ iK ( t )- π̂K ( t )) + [ ( π̂ i ( t )- π̂ iK ( t ))-( π̂ ( t )- π̂K ( t ))] .  (2.12)

We can describe the expected value of the sum of squares of second term of 

right side of (2.12) as follows.

E [ 1
n-1 ∑

n

i=1
{ ( π̂ i ( t )- π̂ iK ( t ))-( π̂ ( t )- π̂K ( t ))}

2 ]
 =

1-f 3
mk

( (r+w)/r) 2

NM ∑
N

i=1
∑
M

j=1
λ ij( t)(1-λ ij( t)) .

            (2.13)

From (2.11) and (2.13), E [ 1
n-1 ∑

n

i=1
( π̂ i ( t )- π̂ ( t ) )

2 ]  can be showed as (2.10).

Similarly, we can deliver the following equations
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E [ 1
n(m-1) ∑

n

i=1
∑
m

j=1
( π̂ ij ( t )- π̂ i ( t ))

2 ]
 =

1
N(M-1) ∑

N

i=1
∑
M

j=1
(π ij( t)-π i( t) )

2

  +
1- f 3
k

( (r+w)/r) 2

NM ∑
N

i=1
∑
M

j=1
λ ij( t)(1-λ ij( t)) ,

           (2.14)

E [ 1nm ∑
n

i=1
∑
m

j=1
λ̂ ij ( t )(1- λ̂ ij ( t )) ]

=
1
NM ∑

N

i=1
∑
M

j=1
λ ij( t)(1-λ ij( t)) .

                          (2.15)

By using the equations (2.10), (2.14) and (2.15), we can obtain (2.9).           

2.2. numerical example

For example, the office of education in a city of name A wants to know the 

quantities of smoking that it's high school students did smoke in the school. We 

further suppose for simplicity that a sample of n= 2  schools is selected from 

N= 3  schools, a sample of m= 2  classes is selected from M= 3  classes for 

each selected school, and finally a sample of k= 4  students is selected from 

K= 9  students for each selected class. Each students in ultimate sample is asked 

to answer the question selected from the device. Let's assume that students 

usually smoke between 1 to 3 in the school, and 6 balls of two different colors, 3 

red balls and 3 white balls marked on 1, 2 or 3 each, be placed in the device.

           red ball   : How many smoking did you have in the school?

           white ball : Read the number marked on its surface.

Suppose the population and response structure are given as below. Those 

numbers represent sensitive values of respondents in population, and the numbers 

shadowed are represent sensitive values of respondents in sample.
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<Population and sample>

School (N ) Class (M ) Student (K ) x i1l x i2l x i3l

1 M= 3 K= 9

x 111 = 1 x 121 = 1 x 131 = 1

x 112 = 3 x 122 = 1 x 132 = 2

x 113 = 3 x 123 = 2 x 133 = 2

x 114 = 1 x 124 = 3 x 134 = 3

x 115 = 3 x 125 = 3 x 135 = 2

x 116 = 2 x 126 = 1 x 136 = 3

x 117 = 1 x 127 = 2 x 137 = 3

x 118 = 3 x 128 = 2 x 138 = 1

x 119 = 2 x 129 = 3 x 139 = 1

2 M= 3 K= 9

x 211 = 2 x 221 = 1 x 231 = 2

x 212 = 2 x 222 = 2 x 232 = 1

x 213 = 3 x 223 = 3 x 233 = 2

x 214 = 1 x 224 = 1 x 234 = 3

x 215 = 2 x 225 = 1 x 235 = 2

x 216 = 3 x 226 = 2 x 236 = 1

x 217 = 1 x 227 = 1 x 237 = 2

x 218 = 3 x 228 = 3 x 238 = 3

x 219 = 2 x 229 = 2 x 239 = 1

3 M= 3 K= 9

x 311 = 1 x 321 = 3 x 331 = 3

x 312 = 2 x 322 = 1 x 332 = 1

x 313 = 3 x 323 = 2 x 333 = 1

x 314 = 1 x 324 = 2 x 334 = 3

x 315 = 3 x 325 = 2 x 335 = 3

x 316 = 2 x 326 = 1 x 336 = 2

x 317 = 2 x 327 = 3 x 337 = 1

x 318 = 3 x 328 = 1 x 338 = 2

x 319 = 1 x 329 = 2 x 339 = 3

The results of our survey on the sample selected from the above population can 

be constructed as below.
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<The selected questions and the responses>

sample

question 

selected 

from the  

device

randomized 

response
sample

question 

selected 

from the  

device

randomized 

response

x 112 = 3 red ball z 111 = 3 x 212 = 2 red ball z 211 = 2

x 114 = 1
white ball 

marked 1
z 112 = 1 x 214 = 1

white ball 

marked 1
z 212 = 1

x 116 = 2 red ball z 113 = 2 x 216 = 3 red ball z 213 = 3

x 118 = 3
white ball 

marked 2
z 114 = 2 x 218 = 3

white ball 

marked 2
z 214 = 2

x 121 = 1 red ball z 121 = 1 x 232 = 1 red ball z 221 = 1

x 123 = 2
white ball 

marked 3
z 122 = 3 x 234 = 3

white ball 

marked 3
z 222 = 3

x 125 = 3 red ball z 123 = 3 x 236 = 1 red ball z 223 = 1

x 127 = 2
white ball 

marked 2
z 124 = 2 x 238 = 3

white ball 

marked 2
z 224 = 2

We can calculate parameters and estimators that dealt in previous chapter.
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<The population proportion and the variance of π̂ ( t )>

The population proportion
The population 

variance

λ11( 1) = 0.333 π11( 1) = 0.333

π1( 1) = 0.333

π ( 1) = 0.333
V( π̂ ( 1 ))
= 0.0311

λ12( 1) = 0.333 π12( 1) = 0.333

λ13( 1) = 0.333 π13( 1) = 0.333

λ21( 1) = 0.278 π21( 1) = 0.222

π2( 1) = 0.333λ22( 1) = 0.389 π22( 1) = 0.444

λ23( 1) = 0.333 π23( 1) = 0.333

λ31( 1) = 0.333 π31( 1) = 0.333

π3( 1) = 0.333λ32( 1) = 0.333 π32( 1) = 0.333

λ33( 1) = 0.333 π33( 1) = 0.333

λ11( 2) = 0.278 π11( 2) = 0.222

π1( 2) = 0.296

π ( 2) = 0.346
V( π̂ ( 2 ))
= 0.0320

λ12( 2) = 0.333 π12( 2) = 0.333

λ13( 2) = 0.333 π13( 2) = 0.333

λ21( 2) = 0.389 π21( 2) = 0.444

π2( 2) = 0.407λ22( 2) = 0.333 π22( 2) = 0.333

λ23( 2) = 0.389 π23( 2) = 0.444

λ31( 2) = 0.333 π31( 2) = 0.333

π3( 2) = 0.333λ32( 2) = 0.389 π32( 2) = 0.444

λ33( 2) = 0.278 π33( 2) = 0.222

λ11( 3) = 0.389 π11( 3) = 0.444

π1( 3) = 0.370

π ( 3) = 0.321
V( π̂ ( 3 ))
= 0.0314

λ12( 3) = 0.333 π12( 3) = 0.333

λ13( 3) = 0.333 π13( 3) = 0.333

λ21( 3) = 0.333 π21( 3) = 0.333

π2( 3) = 0.259λ22( 3) = 0.278 π22( 3) = 0.222

λ23( 3) = 0.278 π23( 3) = 0.222

λ31( 3) = 0.333 π31( 3) = 0.333

π3( 3) = 0.333λ32( 3) = 0.278 π32( 3) = 0.222

λ31( 3) = 0.389 π31( 3) = 0.444
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<The sample proportion and the variance estimator of π̂ ( t )>

The sample proportion
The variance 

estimator

λ̂ 11 ( 1 ) = 0.25 π̂11 ( 1 )= 0.167
π̂ 1 ( 1 )= 0.167

π̂ ( 1 ) = 0.292
V(̂ π̂ ( 1 ))
= 0.0212

λ̂ 12 ( 1 ) = 0.25 π̂12 ( 1 )= 0.167

λ̂ 21 ( 1 ) = 0.25 π̂21 ( 1 )= 0.167
π̂ 2 ( 1 )= 0.416

λ̂ 22 ( 1 ) = 0.50 π̂22 ( 1 )= 0.667

λ̂ 11 ( 2 ) = 0.50 π̂11 ( 2 )= 0.667
π̂ 1 ( 2 )= 0.416

π̂ ( 2 ) = 0.416
V(̂ π̂ ( 2 ))
= 0.0204

λ̂ 12 ( 2 ) = 0.25 π̂12 ( 2 )= 0.167

λ̂ 21 ( 2 ) = 0.50 π̂21 ( 2 )= 0.667
π̂ 2 ( 2 )= 0.416

λ̂ 22 ( 2 ) = 0.25 π̂22 ( 2 )= 0.167

λ̂ 11 ( 3 ) = 0.25 π̂11 ( 3 )= 0.167
π̂ 1 ( 3 )= 0.416

π̂ ( 3 ) = 0.292
V(̂ π̂ ( 3 ))
= 0.0212

λ̂ 12 ( 3 ) = 0.50 π̂12 ( 3 )= 0.667

λ̂ 21 ( 3 ) = 0.25 π̂21 ( 3 )= 0.167
π̂ 2 ( 3 )= 0.167

λ̂ 22 ( 3 ) = 0.25 π̂22 ( 3 )= 0.167

From the above table, we can see that each value of π ( t)  is estimated as π̂ ( t )  

that is, π (1) = 0.333  as π̂ ( 1 ) = 0.292 , π (2) = 0.346  as π̂ ( 2 ) = 0.416 , 

π (3) = 0.321  as π̂ ( 3 ) = 0.292 . In this example the variance estimators are 

appeared to underestimate the population variances. But it is not general case 

because our situation is only one of them.

3. The optimum values of sub-sample sizes of m  and k

3.1. The optimum values of m  and k  given a specified cost

In this section we are to determine the optimum values of m  and k  given a 

specified cost.

The simplest cost function of three-stage sampling is of the form

C'= C- c 0 = c 1n+ c 2nm+ c 3nmk .                   (3.1)

Where C  and c 0  represent a total and an overhead cost respectively, and c 1 , 
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c 2 , and c 3  represent required costs for obtaining fsu, ssu, and tsu respectively.

We can rewrite the variance of (2.8) as follows

V ( π̂ ( t ) ) =
Sa
2

n
+

Sb
2

nm
+

Sc
2

nmk
-
S 1
2

N
,              (3.2)

where

 S 1
2
=

1
N-1 ∑

N

i=1
(π i( t)-π ( t) )

2
,

 Sa
2 = S 1

2-
1

NM(M-1) ∑
N

i=1
∑
M

j=1
(π ij( t)-π i( t) )

2 ,

 Sb
2 =

1
N(M-1) ∑

N

i=1
∑
M

j=1
(π ij( t)-π i( t) )

2-
Sc
2

K
,

 Sc
2 =

( (r+w)/r) 2

NM ∑
N

i=1
∑
M

j=1
λ ij( t)(1-λ ij( t)) .

Consider the following equation to obtain the optimum value of minimizing 

variance under the specified cost.

(V ( π̂ ( t ) ) + S 1
2

N )(C - c 0 ) = ( Sa2 + Sb
2

m
+

Sc
2

mk )(c 1 + c 2m+ c 3mk ) .  
(3.3)

The optimum values of m  and k  that minimize (3.3) can be obtained via 

Cauchy-Schwartz inequality as follows

k opt=
Sc
S b

c 2
c 3
,                             (3.4)

mopt=
Sb
S a

c 1
c 2
.                             (3.5)

We can see that the optimum values k opt  and mopt  depend not only on  

variance ratio but also on cost ratio. Although the optimum values k opt  and mopt   

can be obtained only when we know the exact values of the cost and variance 

ratios, we can alternatively obtain them by using the optimal method suggested by 

Mohammad(1986) when the cost and variance ratios are bounded to some 

intervals. 

The optimum value nopt  is obtained by substituting (3.4) and (3.5) into (3.1)
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n opt=
(C- c 0 ) S a

2
/ c 1

S a c 1 + S b c 2 + S c c 3
.                      (3.6)

A formula for the minimum variance with fixed cost is obtained by substituting 

mopt , k opt  and nopt  in (3.4), (3.5) and (3.6) into (3.2). The result is

V min ( π̂ ( t ) ) =
(Sa c 1 + Sb c 2 + Sc c 3 )

2

C-c 0
-
S 1
2

N
.            (3.7)

When N  is so large that 1
N

 is ignored the relative efficiency(RE) of m, k  

under a specified cost is given by

RE(m,k∣mopt, k opt ) =
(Sa c 1+Sb c 2+Sc c 3)

2

(c 1+c 2m+c 3mk)( Sa2+ Sb
2

m
+
Sc
2

mk )
.       (3.8)

Table 1 below gives optimal values for selected values of the parameters. From 

the equations (3.4), (3.5), and (3.6) we can see that optimal values are determined 

by several parameters. While it is desirable to induce optimal values by 

considering the varieties of all the parameters, we observe optimal values 

according as the number of red ball r  varies under the given values.

N= 10, M= 10, K= 50, w= 3,

C= 100, c 0 = 10, c 1 = 10, c 2 = 5, c 3 = 1,

∑
N

i=1
(π i( t)-π ( t) )

2
= 2, ∑

N

i=1
∑
M

j=1
(π ij( t)-π i( t) )

2
= 20,

                ∑
N

i=1
∑
M

j=1
λ ij( t)(1-λ ij( t)) = 10 .

<Table 1> Optimal values under various values of r . 

r
Sc
Sb

c 2
c 3

Sb
S a

c 1
c 2

nopt mopt k opt

3 1.37 5 1.03 2 4.13 1.46 3.06

6 1.02 5 1.04 2 4.34 1.48 2.27

9 0.90 5 1.05 2 4.42 1.48 2.02

12 0.84 5 1.05 2 4.45 1.48 1.89
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As can be seen from Table 1, the ultimate sampling unit k opts are decreasing 

steadily as the values of r  are increasing. This is consistent with the fact that 

the size of ultimate sampling units by direct question method without 

randomization device is less than that of indirect method with randomization 

device.

Optimal values also depend on cost ratios. Table 2 below gives them for various 

cost ratios. Where w= r= 3,
Sc
Sb
= 1.37, and 

Sb
Sa
= 1.03 .

<Table 2> Optimal values under various values of cost ratio.

c 1 c 2 c 3
c 2
c 3

c 1
c 2

nopt mopt k opt

5 4 3 1.33 1.25 5.96 1.15 1.58

5 4 2 2 1.25 6.38 1.16 1.93

5 4 1 4 1.25 7.04 1.16 2.73

5 2 1 2 2.5 7.87 1.64 1.93

5 1 2 0.5 5 7.63 2.31 1.00

Some problems of choosing integer values may be arise from Table 1 and Table 

2. One way of solving those problems is to maintain a fixed standard efficiency 

by using the Mohammad's optimal method. 

3.2. The optimum values of m  and k  given a specified precision

We determine the optimum values mopt , k opt  and nopt  given a specified 

variance by using the same method of section 3.1.

The optimum values of mopt  and k opt  which minimize the cost function of (3.1) 

under the condition that V ( π̂ ( t ) ) = V 0  are

k opt=
Sc
S b

c 2
c 3
,                            (3.9)

mopt=
Sb
S a

c 1
c 2
.                           (3.10)

The optimum value nopt  is obtained by substituting (3.9) and (3.10) into (3.2)
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nopt=
Sa c 1 + Sb c 2 + Sc c 3

(V 0+ S 1
2

N ) c 1/ Sa2
.                   (3.11)

The minimum cost function with fixed variance V ( π̂ ( t ) ) = V 0  can be obtained 

by substituting the values of mopt , k opt  and nopt  in (3.9), (3.10) and (3.11) into 

(3.1).

The result is

C= c 0 +
(Sa c 1 + Sb c 2 + Sc c 3 )

2

V 0+
S 1
2

N

.                 (3.12)

4. Conclusions and Discussions

We consider and systemize the theoretical validity for applying three-stage 

cluster RRM which employ Liu & Chow's technique to the ultimate sampling unit 

to estimate the sensitive population proportion and variance from a complex 

population which is composed of several clusters. We derive both optimal values 

of first sampling unit, second sampling unit, and third sampling unit to minimize 

variance for a specified cost, and ones to minimize cost function for a specified 

precision.

Choosing a method for collecting survey data is a complex decision involving 

considerations of expense, response rates, the sorts of question being asked, and 

the amount of information needed. The suggested RRM is one of useful methods 

to estimating sensitive proportion from a complex population including sensitive 

attributes although extra effort is necessary to get an acceptable information from 

randomization device.

In a way, we expect the RRM suggested in this paper is helpful to researchers 

of various fields of study such as sociology, economy, medicine, business 

administration, and so on.
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