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Abstract

When X  and Y  have independent normal distributions, we develop a 
Bayesian testing procedure for the equality of two coefficients of variation. 
Under the reference prior of the coefficient of variation, we propose a 
Bayesian test procedure for the equality of two coefficients of variation 
using fractional Bayes factor. A real data example is provided.
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Distribution; Coefficients of Variations.

1. INTRODUCTION

The coefficient of variation is an important parameter in many physical, 

biological and medical sciences. In general, it measures the consistency or 

uniformity of a set of observations on a random variable. Since the coefficient of 

variation is the standard deviation per unit mean, it represents a measure of 

relative variability. Groups can have the same relative variability even if the 

means and variances of the variable of interest are different.

The present paper focuses on Bayesian testing procedure for the equality of two 

coefficients of variation. In Bayesian testing problem, the Bayes factor under 

proper priors or informative priors have been very successful. However, limited 

information and time constraints often require the use of noninformative priors. 

Since noninformative priors such as Jeffreys' priors or reference priors (Berger 

and Bernardo, 1989, 1992) are typically improper so that such priors are only 

defined up to arbitrary constants which affects the values of Bayes factors.  

Spiegalhalter and Smith (1982), O'Hagan (1995) and Berger and Pericchi (1996) 
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have made efforts to compensate for that arbitrariness.

Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a 

data-splitting idea, which would eliminate the arbitrariness of improper priors. 

O'Hagan (1995) proposed the fractional Bayes factor. For removing the 

arbitrariness he used to a portion of the likelihood with a so-called the fraction b. 

These approaches have shown to be quite useful in many statistical areas.

For testing the equality of coefficients of variation (CV), Miller and Karson 

(1977) presented a test for the equality of two CVs. Doornbos and Dijkstra (1983) 

developed a likelihood ratio test and a non central t  test for the case of k  normal 

samples of possible unequal sizes. The likelihood ratio test involves an 

algebraically unsolvable equation when more than two populations are considered. 

So Gupta and Ma (1996) provided a better method of solving this equation 

numerically than the on suggested by Doornbs and Dijkstra (1983) and developed 

a new test, the so called score test. Rao and Vidya (1992) provided a Wald test 

for testing the equality of CVs in two populations with equal sample sizes.

Almost all the work mentioned above is the analysis based on the classical 

point of view, there is a little work on this problem from the viewpoint of 

Bayesian framework. And we feel a strong necessity to develop objective Bayesian 

procedure for dealing this problem. So we want to develop the Bayesian test 

procedure for the equality of two CVs using Bayes factor. Using the 

noninformative priors developed previously, we calculate the posterior probabilities 

of the hypotheses using the fractional Bayes factor of O'Hagan (1995). Our testing 

for the equality of CVs will imply that the two means are of equal sign. Thus we 

can, without loss of generality, assume that the two means are positive (Sinha, 

Rao and Clement, 1978; Gupta, Ramakrishnan and Zhou, 1999). 

The outline of the remaining sections is as follows. In Section 2, using the 

reference priors, we provide the Bayesian testing procedure based on the fractional 

Bayes factor for the testing equality of two coefficients of variation. In Section 3, 

a real example is given.

2. BAYESIAN TEST USING THE FRACTIONAL BAYES 

FACTOR

2.1 Preliminaries

Models (or Hypotheses) H 1, H 2,…, Hq  are under consideration, with the data 

x =(x1,x2, … ,xn)  having probability density function f i( x∣ θ i)  under model 

Hi,i=1,2,…,q. The parameter vectors θ i  are unknown. Let π i( θ i)  be the 

prior distribution of model Hi, and let p i  be the prior probabilities of  model Hi,
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i=1,2,…,q. Then the posterior probability that the model Hi  is true is

                   P(Hi∣ x)=( ∑
q

j=1

p j
p i
⋅B ji)

-1

,                         (1)

where B ji
 is the Bayes factor of model Hj  to model Hi  defined by

           B ji=
mj( x)

mi( x)
=

⌠
⌡f j( x∣ θ j)π j( θ j)d θ j

⌠
⌡f i( x∣ θ i)π i( θ i)d θ i

.                    (2)

The B ji
 interpreted as the comparative support of the data for the model j  to 

i. The computation of B ji
 needs specification of the prior distribution π i( θ i)  

and π j( θ). Usually, one can use the noninformative prior, often improper, such as 

uniform prior, Jeffreys prior, reference prior or probability matching prior. Denote 

it as πNi . The use of improper priors π
N
i (⋅)  in (2) causes the B ji

 to contain 

unspecified constants. To solve this problem, O'Hagan (1995) proposed the 

fractional Bayes factor for Bayesian testing and model selection problem as follow.

When  the πNi ( θ i)  is noninformative prior under Hi, equation  (2) becomes

BNji=

⌠
⌡f j( x∣ θ j)π

N
j ( θ j)d θ j

⌠
⌡f i( x∣ θ i)π

N
i ( θ i)d θ i

.

Then the fraction Bayes factor (FBF) of model Hj  versus model Hi  is

B Fji=
q j(b, x )

q i(b, x )
,

where

q i(b, x )=

⌠
⌡f i( x∣ θ i )π

N
i ( θ i)d θ j

⌠
⌡f
b
i ( x∣ θ i)π

N
i ( θ i)d θ i

,

and f i( x∣ θ i  is the likelihood function and b  specifies a fraction of the 

likelihood which is to be used as a prior density. He proposed three ways for the 

choice of the fraction b. One frequently suggested choice is b=m/n, where m  

is the size of the minimal training sample, assuming this is well defined. (see 

O'Hagan, 1995 and the discussion by Berger and Mortera of O'Hagan, 1995).

2.2 Bayesian Test

Suppose that X=(X1,…,X n 1 )  is a random sample of size n 1  from a normal 

population with mean μ1  and variance μ
2
1γ
2
1
 and Y=(Y1,…,Y n 2)  is a random 
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sample of size n 2  from a normal population with mean μ2  and variance μ
2
2γ
2
2
. 

Here γ1  and γ2  are the CV for each population. Then the joint probability density 

function is

f(x, y∣μ1,μ2,γ1,γ2) = (2π)
-(n 1+n 2)/2

γ
- n1
1 γ

-n2
2 μ

-n1
1 μ

-n2
2
 

                    × exp {-
1

2γ21μ
2
1

∑
n 1

i=1
(xi-μ1)

2
-

1

2γ22μ
2
2

∑
n 2

i=1
(yi-μ2)

2
},

where μ1 >0, μ2 >0, γ 1 >0  and γ 2 >0.

We want to test the hypotheses H 1:γ 1=γ2  vs. H 2:γ 1≠γ2 . The hypothesis H 1

indicate the common CV. Our interest is to develop a Bayesian test for H 1  vs. 

H 2  which is an alternative to the classical tests.

Under the hypothesis H 1, one-at-a-time reference prior for γ(≡γ1=γ2), μ1

and μ2  is

π H 1(γ,μ1,μ2)=μ
-1
1 μ

-1
2 γ

-1(1+2γ2 ) -1/2, μ1,μ2,γ> 0.

This reference prior developed by Lee and Kang (2003). Also they proved that 

the posterior density under this reference prior is proper. The likelihood function 

under H 1  is

L(γ,μ 1,μ 2∣ x, y ) = (2π)
- ( n 1+n 2)/2

μ
- n1
1 μ

- n2
2 γ

- (n 1+n 2)

× exp{-
1

2γ
2
μ
2
1

∑
n 1

i=1
(xi-μ1)

2-
1

2γ
2
μ
2
2

∑
n 2

i=1
(yi-μ2)

2}.

Then the element of FBF under H 1  is given by

⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
Lb(γ,μ 1,μ 2∣ x, y )π 1(γ,μ 1,μ 2)dγdμ 1dμ 2

= (2π)
- b ( n 1+n 2 )/2⌠

⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
μ
- bn 1-1

1 μ
- bn 2-1

2 γ
- b (n 1 +n 2 )-1

(1+2γ
2
)
-
1
2

× exp{-
b

2γ 2μ21
∑
n 1

i=1
(xi-μ1)

2-
b

2γ 2μ22
∑
n 2

i=1
(yi-μ2)

2}dγdμ 1dμ 2.

Let

 S( x, y ) =
⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
μ
- n1-1

1 μ
- n2-1

2 γ
- ( n 1+n 2 )-1(1+2γ 2 ) - 1/2

× exp {-
1

2γ
2μ21
∑
n 1

i=1
(xi-μ1)

2-
1

2γ
2μ22
∑
n 2

i=1
(yi-μ2)

2}dγdμ1dμ2

and

   S
b( x, y ) = ⌠

⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
μ
- bn 1-1

1 μ
- bn 2-1

2 γ
- b ( n 1+n 2 )-1(1+2γ 2 ) - 1/2

× exp {-
b

2γ 2μ21
∑
n 1

i=1
(xi-μ1)

2-
b

2γ 2μ22
∑
n 2

i=1
(yi-μ2)

2}dγdμ 1dμ2.

Then
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q 1(b, x, y)=
(2π)

-
(n 1+n 2)

2 S( x, y)

(2π)
-
b(n 1+n 2)

2 Sb( x, y)

.

For the H 2, one-at-a-time reference prior for μ1,μ2,γ1  and γ2  is

            π H 2(μ 1,μ2,γ1,γ2)

           = π(μ1,γ1)π(μ2,γ2)                                              

             = μ
-1
1 μ

-1
2 γ

-1
1 γ

-1
2 (1+2γ

2
1 )
-1/2
(1+2γ

2
2 )
- 1/2
, μ1,μ2,γ 1,γ 2>0.

Note that the propriety of the posterior distribution under this reference prior is 

given in Appendix 1. The likelihood function under H 2  is

L(μ 1,μ 2,γ 1,γ 2∣ x, y ) = (2π)
- ( n 1+n 2 )/2μ

- n1
1 μ

- n2
2 γ

- n1
1 γ

- n2
2

× exp{-
1

2γ
2
1μ
2
1

∑
n 1

i=1
(xi-μ1)

2
-

1

2γ
2
2μ
2
2

∑
n 2

i=1
(yi-μ2)

2
}.

Thus the element of FBF under H 2  gives as follows.

⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
Lb(μ 1,μ 2,γ 1,γ 2∣ x, y )π 2(μ 1,μ 2,γ 1,γ 2)dμ 1dμ2dγ 1dγ 2

= (2π)
-
b(n 1+n 2)

2 ⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
μ
- bn1-1

1 μ
- bn2-1

2 γ
- bn1-1

1 γ
- bn2-1

2 (1+2γ21 )
- 1/2(1+2γ22 )

- 1/2

 × exp {- b

2γ21μ
2
1

∑
n 1

i=1
(xi-μ1)

2-
b

2γ22μ
2
2

∑
n 2

i=1
(yi-μ2)

2}dμ1dμ2dγ 1dγ 2.

Put 

 T( x, y )=⌠⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
μ
- n1-1

1 μ
- n2-1

2 γ
- n1-1

1 γ
- n2-1

2 (1+2γ21 )
-
1
2 (1+2γ22 )

-
1
2

          × exp {- 1

2γ21μ
2
1

∑
n 1

i=1
(xi-μ1)

2-
1

2γ22μ
2
2

∑
n 2

i=1
(yi-μ2)

2}dμ1dμ2dγ 1dγ 2

and

 Tb( x, y )=⌠⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0

⌠
⌡

∞

0
μ
- bn 1-1

1 μ
- bn 2-1

2 γ
- bn 1-1

1 γ
- bn 2-1

2 (1+2γ21 )
-
1
2
(1+2γ22 )

-
1
2

          × exp {- b

2γ21μ
2
1

∑
n 1

i=1
(xi-μ1)

2-
b

2γ22μ
2
2

∑
n 2

i=1
(yi-μ2)

2}dμ1dμ2dγ 1dγ 2.

Then

q 2(b, x, y)=
(2π)

-
(n 1+n 2)

2
T( x, y)

(2π)
-
b(n 1+n 2)

2 Tb( x, y)

.

Therefore the FBF of H 2  versus H 1  is given by

BF21( x, y)=
T( x, y)Sb( x, y)

Tb( x, y)S( x, y)
.

Note that the element of FBF under H 1  requires a three dimensional integration 
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and the element of FBF under H 2  requires a two dimensional integration. 

Therefore we have the value of the FBF of H 2  versus H 1. In Section 3, we 

investigate our testing procedure and the classical test statistic.

3. AN EXAMPLE

The data in Table 1 are taken from Nelson (1990) and represent the hours to 

failure of 20 motorettes with a new class-H insulation run at 240 ∘C  and 

220 ∘C. It has been observed by Nelson (1990) that lognormal distribution 

adequately fits at the two temperatures. Note that X and Y denote the nature 

logarithm of the failure times in the Table 1. We thus assume that the below data 

come from independent normal distributions.

Table 1: Failure Times at the Two Temperatures 

X ( 240
∘C)

7.0690  7.0690  7.3271  7.3582  7.3883 

7.4176  7.4176  7.4460  7.4736  7.5771

Y ( 220
∘C)

7.4753  7.7981  7.7981  7.7981  7.7981

7.7981  8.0417  8.0417  8.0417  8.0417

For the equality of the CV, the score test developed by Gupta and Ma (1996). 

That is, under H 1, the test statistics is given by

Z=
γ̂
2
(1+2 γ̂

2
)

2
(
a
2
1

n 1
+
a
2
2

n 2
),

where

a 1= ∑
n 1

i=1

(xi- μ̂1)
2

μ̂ 1
2
γ̂
3 -

n 1

γ̂
,a 2= ∑

n 2

i=1

(yi- μ̂2)
2

μ̂ 2
2
γ̂
3 -

n 2

γ̂

and μ1̂, μ 2̂, γ̂  is maximum likelihood estimator of μ1,μ2,γ. Under H 1, Z  has a 

chi-square distribution with 1 degree of freedom. Since μ̂ 1=7.354238, 

μ̂ 2=7.863381  and γ̂= 0.021644, the observed value of the test statistic Z  is 

0.0113. Hence H 1  not rejected and the p-value of the test is almost one (Gupta, 

Ramakrishnan and Zhou, 1999).

The value of fractional Bayes factor of H 2  versus H 1  is  B
F
21=0.2939. We 

assume that the prior probabilities are equal. Then the posterior probability for H 1  

is 0.7729. Thus there are strong evidence for H 1  in terms of the posterior 

probability. 
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Therefore both of the classical method and Bayes factor give reasonable 

answers in this example.

APPENDIX 1.  Propriety of Posterior Distribution

Under the reference prior π(μ,γ)=μ -1γ -1(1+2γ2) -1/2,  the joint posterior for 

μ,γ  given x  is

π(μ,γ∣ x)∝μ
-(n+1)

γ
-(n+1)

(1+2γ
2
)
-1/2
exp{-

∑
n

i=1
(xi-μ)

2

2γ2μ2
}.

Since  (1+2γ
2
)
-1/2
≤2

-1/2
γ
-1, thus

        π(μ,γ∣ x)≤C 1μ
-(n+1)

γ
-(n+2)

exp{-
∑
n

i=1
(xi-μ)

2

2γ2μ2
},             (3)

where C 1  is a constant. Integrating with respect to γ  in (3), then

C 2[ ∑
n

i=1
(xi-μ)

2]
-
n+1
2 =C 3 [1+

n( x-μ)2

S
2 ]

-
n+1
2 ,

where S
2
= ∑

n

i=1
(xi- x)

2  and C 2  and C 3  are a constant. Thus the above form 

has a Student- t  with n  degrees of freedom. Thus the posterior distribution is 

proper. This completes the proof.  □
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