Journal of Korean Data & Information Science Society 2003, Vol. 14, No.4 pp. 989~995

Inference on $P(Y \triangleleft X)$ in an Exponential Distribution Joongdae Kim¹) · Yeung-Gil Moon²) · Junho Kang³)

Abstract

Inference for probability $P(Y \le X)$ in two parameter exponential distribution will be considered when the scale parameters are known or not : point and interval estimations, and test for a null hypothesis.

Keywords : exponential distribution, point and interval estimation, test for hypothesis

1. Introduction

A two-parameter exponential distribution is given by

$$f(x; \mu, \sigma) = \frac{1}{\sigma} e^{-(x-\mu)/\sigma}, \quad x > \mu, \quad \text{where} \quad \sigma > 0, \ \mu \in \mathbb{R}, \tag{1.1}$$

it will be denoted $X \sim \text{EXP}(\mu, \sigma)$.

It is very important for us to consider an exponential distribution in parametric inferences. Here we shall consider inference for $P(Y \triangleleft X)$ in two parameter exponential distribution.

The probability that a Weibull random variable Y is less than another independent Weibull random variable X was considered(McCool(1991)). Many other authors have considered the probability $P(Y \triangleleft X)$, where X and Y are independent random variables.

The problem of estimating and of drawing inferences about, the probability that

¹⁾ Associated Professor, Department of Computer Information, Andong Junior College, Andong, 760–300, Korea. e-mail : jdkim@andong-c.ac.kr

²⁾ Assistant Professor, Department of Quality Management, Kangwon Tourism College, Taebaek, 235–711, Korea.

³⁾ Associated professor, School of Computer Engineering, Kaya University, Korung, 717-800, Korea.

a random variable Y is less than an independent random variable X, arises in a reliability.

When Y represents the random value of a stress that a device will be subjected to in service and X represents the strength that varies from item to item in the population of devices, then the reliability R, i.e. the probability that a randomly selected device functions successfully, is equal to $P(Y \leq X)$. The same problem also arises in the context of statistical tolerance where represents, say, Y the diameter of a draft and X the diameter of a bearing that is to be mounted on the shaft. The probability that the bearing fits without interference is then $P(Y \leq X)$.

In biometrics, Y represents a patient's remaining years of life if treated with drug A and X represents the patient's remaining years when treated with drug B. If the choice of drug is left to the patient, person's deliberations will center on whether $P(Y \le X)$ is less than or greater than 1/2.

Here, we shall consider inferences on $P(Y \triangleleft X)$ in two parameter exponential distribution when the scale parameters are known or not : point and interval estimations, and test for a null hypothesis.

2. Inference on P(X < Y)

Let X and Y be independent two parameter exponential random variables, $X \sim \text{EXP}(\mu_x, \sigma_x)$ and $Y \sim \text{EXP}(\mu_y, \sigma_y)$, respectively.

Then,
$$P(X \leqslant Y) = \int \int_{\mu_y \leqslant y \leqslant x} f_Y(y; \mu_y, \sigma_y) \cdot f_X(x; \mu_x, \sigma_x) dx$$
$$= 1 - \frac{e^{\delta/\sigma_y}}{1 + \sigma_x/\sigma_y}, \quad \text{where} \quad \delta = \mu_y - \mu_x. \tag{2.1}$$

where $f_X(x)$ and $f_Y(y)$ are the density functions of X and Y, respectively.

To consider inferences on $P(X \lt Y)$, assume X_1, X_2, \dots, X_m and Y_1, Y_2, \dots, Y_n be two independent random samples from $X \sim \text{EXP}(\mu_x, \sigma_x)$ and $Y \sim \text{EXP}(\mu_y, \sigma_y)$, respectively.

Then the MLE $\hat{\delta}$ of δ is

$$\hat{\delta} = \widehat{\mu}_{y} - \widehat{\mu}_{x} = Y_{(1)} - X_{(1)}, \qquad (2.2)$$

where $X_{(1)}$ and $Y_{(1)}$ are the first order statistics of $X_i's$ and $Y_i's$, respectively.

990

By the result of Johnson, etal.(1995),

Fact 1. (a) $X_{(1)}$ follows an exponential distribution with a location parameter μ_x and a scale parameter σ_x/m .

(b) If X_1, X_2, \dots, X_m are iid exponential distributions with a scale parameter σ and a location parameter μ , then $\sum_{i=1}^{m} (X_i - X_{(1)})$ follows a gamma distribution with a shape parameter m-1 and a scale parameter σ .

(c) If a random variable X follows a gamma distribution with a shape parameter α and a scale parameter β , then $E\left(\frac{1}{X^k}\right) = \frac{\Gamma(\alpha - k)}{\Gamma(\alpha)\beta^k}$, for $\alpha > k$.

From Fact 1(a), we can obtain the expectation and variance of $\hat{\delta}$:

$$E(\hat{\delta}) = \delta + \frac{\sigma_v}{n} - \frac{\sigma_x}{m} \quad \text{and} \quad Var(\hat{\delta}) = \frac{\sigma_x^2}{m^2} + \frac{\sigma_v^2}{n^2}.$$
 (2.3)

Let $D \equiv Y_{(1)} - X_{(1)}$. Then we can obtain the density function of D:

$$f_D(d) = \begin{cases} \frac{mn}{n\sigma_x + m\sigma_y} e^{-\frac{n}{\sigma_y}(d-\delta)}, & \text{if } d \ge \delta \\ \frac{mn}{n\sigma_x + m\sigma_y} e^{-\frac{m}{\sigma_x}(\delta-d)}, & \text{if } d < \delta \end{cases}$$
(2.4)

2-A. When the scale parameters $\sigma_x = \sigma_y = \sigma_0$ is known

From the result (2.1),

$$R = P(X \langle Y) = 1 - \frac{1}{2} e^{\delta/\sigma_0}, \quad \delta = \mu_y - \mu_x.$$

Then the probability depends on δ only, Because R is a monotone function in δ , inference on δ is equivalent to inference on R. We hereafter confine attention to the parameter δ (see McCool(1991)).

When the scale parameters $\sigma_x = \sigma_y = \sigma_0$ is known, let $T = D - \delta$. Then from the pdf (2.4) of *D*, we have the pdf of *T*:

Joongdae Kim · Yeung-Gil Moon · Junho Kang

$$f_T(t) = \begin{cases} \frac{m}{m+n} \cdot \frac{n}{\sigma_0} e^{\frac{-n}{\sigma_0}t}, & \text{if } t \ge 0\\ \frac{n}{m+n} \cdot \frac{m}{\sigma_0} e^{\frac{m}{\sigma_0}t}, & \text{if } t < 0. \end{cases}$$
(2.5)

Based on a pivotal quantity T, we shall consider an $(1 - p_1 - p_2)100\%$ confidence interval of δ . For a given $0 < p_1 < 1$, there exists an b_1 such that

$$p_1 = \int_{-\infty}^{b_1} \frac{n}{m+n} \cdot \frac{m}{\sigma_0} e^{\frac{m}{\sigma_0}t} dt, \text{ and hence,}$$

$$b_1 = -\frac{\sigma_0}{2m} \cdot \chi^2_{2, \frac{m+n}{\sigma_0}p_1}, \qquad (2.6)$$

where $\alpha \equiv \int_{\chi^2_{2,a}}^{\infty} \chi_2^2(t) dt$, $\chi_2^2(t)$ is the pdf of chi-square distribution of df 2. For another given $0 < p_2 < 1$, there exists an b_2 such that $p_2 = \int_{b_2}^{\infty} \frac{m}{m+n} \cdot \frac{n}{\sigma_0} e^{-\frac{n}{\sigma_o}t} dt$, and hence, $b_2 = \frac{\sigma_0}{2n} \cdot \chi_{2,\frac{m+n}{m},b_2}^2$. (2.7)

Therefore, $(Y_{(1)} - X_{(1)} - b_2, Y_{(1)} - X_{(1)} - b_1)$ is an $(1 - p_1 - p_2)100\%$ confidence interval of δ in two parameter exponential distribution.

Next We wish to test the null hypothesis H_0 : $\mu_x = \mu_y$ against H_1 : $\mu_x \neq \mu_y$. Let $\Theta = \{(\mu_x, \mu_y) \mid \mu_x \in R, \mu_y \in R\}$ and $\theta = (\mu_x, \mu_y)$. Then the joint pdf of $(X_1, \dots, X_m, Y_1, \dots, Y_n)$ is

$$L(\theta) = f_{\theta}(x, y) = \prod_{i=1}^{m} \frac{1}{\sigma_0} e^{-\frac{1}{\sigma_0}(x_i - \mu_x)} \cdot \prod_{i=1}^{n} \frac{1}{\sigma_0} e^{-\frac{1}{\sigma_0}(y_i - \mu_y)}, \text{ for all } x_i > \mu_x, y_i > \mu_y.$$

From the likelihood function, we can obtain the MLE's of μ_x and μ_y ,

$$\widehat{\mu}_x = X_{(1)}$$
 and $\widehat{\mu}_y = Y_{(1)}$.

If $\mu_x = \mu_y = \mu$, then the MLE of μ is

$$\hat{\mu} = \min(X_{(1)}, Y_{(1)}) = (Y_{(1)} + X_{(1)} - |Y_{(1)} - X_{(1)}|)/2$$

992

From definition of a likelihood ratio test(Rohatgi(1976)), the likelihood ratio test function can be obtained:

$$\lambda(x, y) = \exp(- |D| (\frac{m}{2\sigma_0} + \frac{n}{2\sigma_0}) + D(\frac{m}{2\sigma_0} - \frac{n}{2\sigma_0})),$$

where, $D = Y_{(1)} - X_{(1)}.$

Therefore, $\lambda(x, y) \langle c \text{ is equivalent to } D \langle b_1 \text{ or } D \rangle b_2.$ (2.8) Under $H_0: \mu_x = \mu_y$, i.e. $\delta = 0$, we hold $T = D - \delta = D$, and hence, for given $0 \langle a \langle 1 \rangle$ we can find b_1 and b_2 of (2.8), through the results (2.6) and (2.7) if $p_1 = p_2 = a/2$.

2-B. When the scale parameters $\sigma_x = \sigma_y = \sigma$ is unknown

First we wish to know whether two scale parameters are equal or not:

To test the null hypothesis H_0 : $\sigma_x = \sigma_y = \sigma$ against H_1 : $\sigma_x \neq \sigma_y$, $\mu_x \in R$, $\mu_y \in R$

Let $\Theta = \{(\sigma_x, \sigma_y, \mu_x, \mu_y) \mid \sigma_x > 0, \sigma_y > 0, \mu_x \in R, \mu_y \in R\}$ and $\theta = (\sigma_x, \sigma_y, \mu_x, \mu_y)$. Then the joint pdf of $(X_1, \dots, X_m, Y_1, \dots, Y_n)$ is

$$L(\theta) = f_{\theta}(x, y) = \prod_{i=1}^{m} \frac{1}{\sigma_x} e^{-\frac{1}{\sigma_x}(x_i - \mu_x)} \cdot \prod_{i=1}^{n} \frac{1}{\sigma_y} e^{-\frac{1}{\sigma_y}(y_i - \mu_y)}, \text{ for all } x_i \rangle \mu_x, \quad y_i \rangle \mu_y.$$

Differentiating with respect to σ_x and σ_y , we can obtain the MLE's

$$\widehat{\sigma}_x = \frac{1}{m} \sum_{i=1}^m X_i, \quad \widehat{\sigma}_y = \frac{1}{n} \sum_{i=1}^n Y_i, \text{ and } \quad \widehat{\mu}_x = X_{(1)} \text{ and } \quad \widehat{\mu}_y = Y_{(1)}.$$

If $\sigma_x = \sigma_y = \sigma$, then the MLE of σ is

$$\hat{\sigma} = \frac{1}{n+m} \left(\sum_{i=1}^{m} (X_i - \widehat{\mu}_x) + \sum_{i=1}^{n} (Y_i - \widehat{\mu}_y) \right).$$
(2.9)

From definition of a likelihood ratio test(Rohatgi(1976)), the likelihood ratio test function can be obtained :

$$\lambda(x,y) = \left(\frac{\widehat{\sigma}_x}{\widehat{\sigma}}\right)^m \cdot \left(\frac{\widehat{\sigma}_y}{\widehat{\sigma}}\right)^n = \left(\frac{m+n}{m}\right)^m \cdot \left(\frac{m+n}{n}\right)^n \cdot \left(\frac{1}{1+1/U}\right)^m \cdot \left(\frac{1}{1+U}\right)^n,$$

Joongdae Kim · Yeung-Gil Moon · Junho Kang

where
$$U \equiv \frac{\sum_{i=1}^{m} (X_i - X_{(1)})}{\sum_{i=1}^{n} (Y_i - Y_{(1)})}$$
.

Therefore, $\lambda(x, y) \langle c \text{ is equivalent to } U \langle u_1 \text{ or } U \rangle u_2.$ (2.10)

From Fact 1(b) and the results of Rohatgi(1976), we have the followings;

Fact 2. (a) $Z \equiv \frac{2\sum_{i=1}^{m} (X_i - X_{(1)})}{\sigma_x}$ and $W \equiv \frac{2\sum_{i=1}^{m} (Y_i - Y_{(1)})}{\sigma_y}$ follows chi-square distribution with df's 2(m-1) and 2(n-1), respectively.

(b) The random variables Z and W are independent.

Under H_0 : $\sigma_x = \sigma_y = \sigma$, from Fact 2, $U \equiv \frac{\sum_{i=1}^m (X_i - X_{(1)})}{\sum_{i=1}^n (Y_i - Y_{(1)})}$ follows a

F-distribution with df's 2(m-1) and 2(n-1). And hence, for a given $0 \le \alpha \le 1$, $u_2 = F_{\alpha/2}(2(m-1), 2(n-1))$ and $u_1 = 1/F_{\alpha/2}(2(n-1), 2(m-1))$, from (2.10).

If $\sigma_x = \sigma_y = \sigma$, then from the result (2.1),

$$R = P(X \langle Y) = 1 - \frac{1}{2} e^{\delta/\sigma}, \text{ where } \delta = \mu_y - \mu_x.$$

Let $\beta \equiv \delta / \sigma$. Then, an estimator of β is defined as :

$$\hat{\beta} \equiv \hat{\delta}/\hat{\sigma} = \frac{(m+n)(Y_{(1)} - X_{(1)})}{\sum_{i=1}^{m} (X_i - X_{(1)}) + \sum_{i=1}^{n} (Y_i - Y_{(1)})}, \text{ from results (2.2) and (2.9).}$$

From the results (2.3) and Fact 1(c), we can obtain the followings :

$$E(\hat{\beta}) = \beta + \frac{3}{m+n-3}\beta + \frac{m^2 - n^2}{mn(m+n-3)}$$
$$Var(\hat{\beta}) = \frac{(m+n)^2(m^2+n^2)}{m^2n^2(m+n-3)^2(m+n-4)}.$$

and

References

- Johnson, N. L., Kotz, S. and Balakrishnan, N.(1995), Continuous Univariate Distributions-2, John Wiley & Sons, New York.
- McCool, J.I.(1991), Inference on P(X<Y) in the Weibull Case, *Communications in Statistics Simulations*, 20(1), 129–148.
- 3. Rohatgi, V.K.(1976), An Introduction to Probability Theory and Mathematical Statistics, John Wiley & Sons, New York.

[received date : Sep. 2003, accepted date : Oct. 2003]