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Asymptotics in Load-Balanced Tandem Networks1)

Jiyeon Lee2)

Abstract

A tandem network in which all nodes have the same load is considered. 
We derive bounds on the probability that the total population of the 
tandem network exceeds a large value by using its relation to the 
stationary distribution. These bounds imply a stronger asymptotic limit 
than that in the large deviation theory.
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1. Introduction

We consider d  M/M/1 nodes in tandem as shown in Figure 1. A customer 

arrives at node 1 from outside according to a Poisson process with rate λ (> 0 )  

and, if necessary, waits in a buffer until the node gets free to get served. Once 

service is completed at node i, the customer is routed to the next node i + 1  

(1≤i≤d − 1). After getting served at node d  the customer finally leaves the 

network. Service time at node i  is exponentially distributed with mean 1/µi  

(1≤i≤d). Each node operates on a first-in-first-out basis. This network is called 

an open tandem network.

λ
 μ 1  μ 2  μ d......

                

      node 1          node 2                    node d

Figure 1.  An open tandem network of d  M/M/1 nodes
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We analyze an overflow probability pK  that the network population reaches a 

large value K  before returning to 0, starting from 0. Glasserman and Kou(1995) 

proved the following asymptotic limit for pK  in the tandem network:

lim
K→∞

log   pK

K
=  log ρ*,                                (1)

where ρ*  is the load of the most highly loaded node in the network. 

In this paper, we derive upper and lower bounds on pK  by the stationary 

distribution, and we then obtain the stronger asymptotic limit than (1) for the 

load-balanced tandem network in which all nodes have the same load.

2. Main Results

A tandem network can be described as a Markov jump process X(t ), t≥0  on 

S≡ N d , where the state x
→
 =  (x1, x2, , xd ) S depicts the system when there 

are xicustomers waiting or being served at node i. Under the light traffic 

conditions that 

ρi  ≡ λ/µi < 1  for all i = 1, 2, , d ,                      (2)

the stationary distribution of X (t )  is given by 

π (x
→
) =∏ di = 1 (1 − ρi )ρ

xi

i ,  x
→
 =  (x1, x2, , xd ) S  (Walrand(1988)).

We call a tandem network stable if the light traffic conditions (2) hold. In 

particular, if all node have the same service rate µ, the stationary distribution can 

be simplified as 

π (x
→
) = (1 − ρ )dρ

Σ
i = 1

d

xi

,  x
→
 =  (x1, x2, , xd ) S

where ρ≡ λ/µ  denotes the same load of nodes. A network is load-balanced if all 

nodes have the same load. We assume that the network is both stable and 

load-balanced.

Let us define an overflow set by

CK≡ x
→
: x1 + x2 + + xd = K ,

the set of states in which the network population is exactly K. Notice that the 

stationary distribution of CK,  π (CK)  is given by 
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π (CK ) = Σ
Σ
i= 1

d

xi =K

(1− ρ)dρ
Σ
i= 1

d

xi

= (1− ρ)dρK Σ
Σ
i= 1

d

xi =K

1

= 





K + d− 1
d− 1

(1− ρ )dρK.

                        (3)

In the following theorem, we show that the overflow probability pK  can be 

bounded by the stationary distribution of CK, π (CK).

Theorem 1  For an open stable load-balanced tandem network, we have

c1  π (CK )≤ pK   ≤  c2  π (CK ) ,     

where 

c1 = [d  ρ (1 − ρ )d− 1]− 1

and 

c2 = [λ (1 − ρ )d]− 1

for sufficiently large K.                     

Proof  Let X̂ (n)  be the uniformized Markov chain(Walrand(1988)) of the original 

process X (t ) , where we assume without loss of generality that we have re-scaled 

time such that λ + dµ = 1.  Then, the Markov chain X̂ (n)  has the same 

stationary distribution π  as the original process X (t ) . 

Next, let Ŷ (n)  be obtained from X̂ (n)  by watching it in the set 0
−−→∪CK . 

Then, Ŷ (n)  is also a discrete-time Markov chain with the stationary distribution 

π̂  given by 

 π̂ (x
→
) = π (x

→
)






Σ
y
→

0
→∪CK

π (y
→
)

− 1

and the transition probability matrix P̂  defined by 

P̂ (x
→
, y
→
)≡ P ( Ŷ (1 ) = y

→|Ŷ (0 ) = x
→
)  for all x

→
,  y

→
0
→ ∪CK. Specifically, we have 
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P̂ (0
→
, 0
→

) = P ( Ŷ (1 ) = 0
→|Ŷ (0 ) = 0

→
)

= P ( X̂ (n) = 0
→

 before  X̂ (n) CK|X̂ (1 )≠ 0
→
, X̂ (0 ) = 0

→
)

P ( X̂ (1 )≠ 0
→|X̂ (0 ) = 0

→
) + P ( X̂ (1 ) = 0

→|X̂ (0 ) = 0
→

)

= λP ( X̂ (n) = 0
→
        before  X̂ (n) CK|X̂ (1 )≠ 0

→
, X̂ (0 ) = 0

→
) + dµ

= 1 − pK  λ

because pK = P (X̂ (n ) CK  before  X̂ (n ) = 0
→|X̂ (1 )≠ 0

→
, X̂ (0 ) = 0

→
) . 

Therefore, 

pK =
1
λ Σ

x
→

CK

P̂(0
→
, x
→
) ,

using P̂(0
→
,0
→
) + Σ

x
→

CK

P̂(0
→
, x
→
) = 1 .

Now, let Ỹ (n)  be the time reversal of Ŷ (n) , so Ỹ (n)  is a Markov chain with 

the same stationary distribution π̂  and its transition probability matrix P̃  given by 

P̃ (x
→
, y
→
) =

π̂ (y
→
)P̂ (y

→
, x
→
)

π̂ (x
→
)

 for x
→
, y
→

0
→∪CK.

Thus, pK  can be rewritten as

pK =
1

λ  π (0
→
)
Σ

x
→

CK

π (x
→
)P̃(x

→
,0
→
).

Since P̃ (x
→
, 0
→

)≤1  for all x
→

CK , the estimate c2  in the upper bound is given by

c2 = [λ (1 − ρ )d]− 1 . 

Notice that for x
→

CK  with x1 = 0 , P̂(0
→
, x
→
) = 0  because the process X̂ (n)  

needs at least one external arrival at node 1 to hit CK  for the first time. Thus 

P̃(x
→
, 0
→
) = 0  for x

→
CK  with x1 = 0. If we let 

CK ≡CK − x
→

CK : x1 = 0, x2 + + xd = K ,

clearly from (3) we have

π (CK ) =
K

K + d − 1
π (CK )

≥ 1
d
π (CK )

                           (4)

for all K≥1.  Therefore, if we can show, for each x
→

CK , that P̃ (x
→
, 0
→

)  is 
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bounded below by a positive constant, which is independent of K, the lower bound 

for pK  is given by

pK≥c1   π (CK),                                 (5)

where c1  denotes a positive constant, independent of K.

Let X̃ (t )  be the time reversal of the original process X (t ) . Then, it is well 

known that the time reversal X̃ (t )  is a Markov jump process for another tandem 

network with the same number of nodes and the same service rates but different 

arrival pattern (Walrand(1988)). In the reversed tandem network there is an 

external arrival process at node d  and after service completion at node i  the 

customer moves to node i − 1 , 2≤i≤d  and finally leaves the system at node 1. 

Figure 2 depicts the reversed tandem network evolved by X̃ (t ) .

                                    

λ
 μ 1  μ 2  μ d

......
                

       node 1          node 2                    node d

Figure 2.  The reversed tandem network 

Let X̃ K (t )  denote the Markov jump process when the time reversal X̃ (t )  is 

started with x
→

CK . Anantharam et al.(1990) showed that the process X̃ K (t )  

converges to a fluid limit F (t )  in the sense that, for any {0> 0  and all {> {0,

lim
K→∞

P (sup0≤t≤T│ 1
K

X̃ K (Kt ) − F (t )│≥{    |│ 1
K

X̃ K (0 ) − F (0 )│ < {0 ) = 0 ,  

  (6)

where |X| = max|Xi|  and T = inf t > 0 : Fi (t ) = 0  for  all  i = 1, , d . 

Anantharam and Ganesh(1994) also proved that Σ
i = 1

d

Fi (t ) , the total amount of 

fluid in the network, is strictly decreasing at a positive rate as long as the 

amount of fluid is not zero, and the fluid limit Fi (t )  at node i  stays at zero after 

it reaches zero until the total amount of fluid Σ
i = 1

d

Fi (t )  becomes empty. That is, if 

we let Ti≡ inf t > 0 : Fi (t ) = 0  for i = 1, 2, , d , then

Fi (t ) = 0  for all Ti≤t≤T,                        (7)
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where T  is the time at which the fluid limit hits zero. 

Notice that

lim
K→∞

1
K

X̃ Ki (0 ) = Fi (0 )

exists for i = 1, 2, , d . Then, from (6) and (7) we can determine that the 

following statements are true with probability going to one as K  goes to infinity;

Σ
i = 1

d

Xĩ 
K (t ) < {K

for all K max (T1,T2, , Td )≤t≤KT  and in particular,

Σ
i = 1

d

Xĩ 
K (KT ) < {K .                                (8)

We thus have bounds on the queue length until the fluid limit hits zero. Now 

we want to extend this to the time that the actual queue length process hits zero. 

To do so, we need the following lemma, which is proved in Anantharam(1989).

Lemma 2 Consider an open stable tandem network, started with a total of N  

customers in the system. Then the time for the network to empty is stochastically 

dominated by the sum of N  independent, identically distributed(i.i.d.) random 

variables of finite mean and variance.

Let TK  denote the first time when the queue length process X̃ K (t )  hits the 

state 0
→
. Then by the above lemma and (8) that TK −KT  is stochastically 

dominated by the sum of {K  i.i.d. random variables of finite mean and variance. 

Since the external arrival process is Poisson of rate λ, the total number of 

external arrivals in the period [KT,TK ]  is less than a constant times {K, with 

probability going to one as K→∞. This implies that with asymptotic probability 
one, 

Σ
i = 1

d

Xĩ 
K (t ) < const {K

where the constant const  is independent of K  and is {> 0  arbitrary. So it enables 

us to extend the validity of (8) through the period [K max (T1,T2, , Td ), TK ], 

that is, 

 Σ
i = 1

d

Xĩ 
K (t ) < const {K   for all K max (T1,T2, , Td )≤t≤TK            (9)

with asymptotic probability one.

Now, we investigate the process Σ
i = 1

d

X̃ i 
K (t )  during the time period 
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(0, K max (T1,T2, , Td )) . Let Z (t )  denote the process started in the same 

initial condition as X̃ K (t ) , but with the output of the nodes replaced by their 

virtual departure. Then, the queue length process Z (t )  dominates X̃ K (t ) , that is, 

for any sample paths w,

Zi(t;w)≥X̃ Ki (t;w), i = 1, 2, , d , t≥0 . 

In order to see this, we use the coloring method employed in Anantharam and 

Ganesh(1994). Color red the virtual departures from each node that are not actual 

departures and color blue all other departures from all nodes and external arrivals. 

Note that red customers can arrive only when at least one node is empty. The 

idea is that when a service occurs at a node with non-empty queue, we are free 

to decide which customer in the queue departs without affecting the process of 

total number of customers at the nodes. Blue customers always have precedence 

over red customers, i.e. when a service takes place at node i, red customer in 

queue at node i  does not move unless there is no blue customer in queue at node 

i. Then, we can see that X̃ K (t )  is the process of blue customers, while Z (t )  is 

the process of all customers. 

Observe that the process Σ
i = 1

d

Zi (t )  is a Markov jump process with the arrival 

rate λ, the service rate dµ, and the transition probability to itself after the service 

(d − 1 )/d , started from Σ
i = 1

d

Zi (0 ) = K . Since λ< µ , the process Σ
i = 1

d

Zi (t )  is stable. 

Then, it can be seen that for the process Σ
i = 1

d

Zi (t ) ,

P (Σ
i = 1

d

Zi (t ) = 0  before  Σ
i = 1

d

Zi (t ) = K )

> µ P (Σ
i = 1

d

Zi (t ) = 0  before  Σ
i = 1

d

Zi (t ) = K|Σ
i = 1

d

Zi (0 ) = K − 1 ),

where µ  is the probability that Σ
i = 1

d

Zi (t )  is decreased by one before it is increased 

by one or jumps to itself. From the gambler's ruin probability(Feller(1968)) we 

obtain 
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P (Σ
i = 1

d

Zi (t ) = 0  before  Σ
i = 1

d

Zi (t ) = K|Σ
i = 1

d

Zi (0 ) = K − 1 ) =
(µ/λ )K − (µ/λ )K − 1

(µ/λ )K − 1

> 1 − (
µ
λ

)− 1

  

  (10)

for all K≥1 .

Let T0 := inf t > 0 : Σ
i = 1

d

Zi (t ) = 0 . Since the stable Markov jump process 

Σ
i = 1

d

Zi (t )  does not grow by K  in time linear in K, with probability one, we can 

have 

lim
K→∞

P (Σ
i = 1

d

Zi (t ) < K   for  all  T0≤t≤K max (T1, , Td )) = 1 .

Hence, Σ
i = 1

d

X̃ i 
K (t )  which is dominated by Σ

i = 1

d

Zi (t ) , does not hit CK  before the 

time K max (T1, , Td )  with probability bounded away from zero because λ< µ  

in (10).

Combining this with (9) gives Σ
i = 1

d

X̃ i 
K (t ) < K  for all 0≤t≤TK  with a positive 

probability, independent of K. Thus X̃ (t )  with initial state x
→

CK  satisfies 

liminfK→∞P (X̃ (t ) = 0
→

 before  X̃ (t )  hits  CK ) > 0 .

Then, since the time reversal of the watching of the embedding is the same as 

the watching of the embedding the time reversal, we have that for all x
→

CK ,

 P̃ (x
→
, 0
→

) > 0 ,

independent of K. So we finally obtain the lower bound on pK  given by

pK≥c1π (CK ),

where c1  is a positive constant, independent of K. For large enough K, from (4) 

and (10) the explicit estimate for c1  is given by 

c1 = [d  ρ (1 − ρ )d− 1]− 1 .                             ■

Corollary 3  For an open stable load-balanced tandem network of which load 

is ρ, 

lim
K→∞

log pK −  log  ρK

log K
= d − 1 .                         (11)                   



Asymptotics in Load-Balanced Tandem Networks 723

Proof.  Substituting (3) into the bounds on pK  in Theorem 1 and noting that 

lim
K→∞

log 



K + d − 1
d − 1

log K
= d − 1

give the asymptotic limit in (11). 

■

Remark  Notice that the asymptotic limit in (11) is stronger than that in (1) 

obtained by Glasserman and Kou(1995) and that the asymptotics of the overflow 

probability depends on the number of nodes in the load-balanced network.
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