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Abstract

When X  and Y  have independent normal distributions with equal 
coefficient of variation, we develop the reference priors for different 
groups of ordering for the parameters. Propriety of posteriors under 
reference priors proved. A real example is presented to compare the 
classical estimator and Bayes estimator.
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1. INTRODUCTION

We consider that X  and Y  are independent with normal distributions having 

equal coefficient of variation. That is, let X=(X 1,…,Xn 1 )  be a random sample 

of size n 1  from a normal population with mean μ1  and variance μ
2
1γ
2  and let

Y=(Y 1,…,Yn 2 )  be a random sample of size n 2  from a normal population with 

mean μ2  and variance μ
2
2γ
2. Then the joint probability density function is

 f( x,y∣μ1,μ 2,γ) = (2π)
- ( n 1+n 2 )/2γ

- ( n 1+n 2 )μ
- n1
1 μ

- n2
2

× exp{-
1

2γ
2
μ
2
1

∑
n 1

i=1
(xi-μ1)

2
-

1

2γ
2
μ
2
2

∑
n 2

i=1
(yi-μ2)

2
},

  (1)

where μ1 >0, μ2 >0, γ> 0  and γ  is the common coefficient of variation.

The present paper focuses on Bayesian inference for μ1, μ2  and γ. The 

emphasis is on noninformative priors. Although subjective Bayesians are often 
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critical of such priors, these priors have clear pragmatic appeal especially when 

prior information is vague in nature. The most frequently used noninformative 

prior is Jeffreys' (1961) prior, which is proportional to the positive square of the 

determinant of the Fisher information matrix. In the one parameter case, Welch 

and Peers (1963) proved that a one-sided credible interval from Jeffreys' prior 

matches the corresponding frequentist coverage probability up to O(n -1).

In spite of its success in one parameter problems, Jeffreys' prior frequently runs 

in to serious difficulties in the presence of nuisance parameters. For example, in 

Neyman-Scott problem, the Jeffrey's prior produces an inconsistent estimator of 

the error variance, in the multinomial problem it lacks marginalization over 

nuisance cell probabilities and in estimating the sum of squares of a large number 

of independent normal means with a common variance, it leads to an 

unsatisfactory posterior. As an alternative, Ghosh and Mukerjee (1992), and Berger 

and Bernardo (1989,1992) extended Bernardo's (1979) reference prior approach, 

giving a general algorithm to derive a reference prior by splitting the parameters 

into several groups according to their order of inferential importance. This 

approach is very successful in various practical problems. Quite often reference 

priors satisfy the matching criterion.

We consider that X  and Y  are independent with normal distributions having 

equal coefficient of variation. The assumption of equal coefficient of variation is 

because the coefficient of variation represents a measure of relative variability and 

groups can have the same relative variability even if the means and variances of 

the variable of interest are different. The assumption of homogeneous coefficients 

of variation is a valid assumption in many types of agricultural, biological and 

psychological experimentation, because many times the treatment that yields a 

larger mean also has a larger standard deviation (Lohrding, 1969). Our assumption 

of equal coefficient of variation will imply that the two means are of equal sign. 

Thus we can, without loss of generality, assume that the two means are positive 

(Sinha, Rao and Clement, 1978; Gupta, Ramakrishnan and Zhou, 1999).

The outline of the remaining sections is as follows. In Section 2, we derive 

Fisher information matrix. We develop the reference priors for different groups of 

ordering for the parameters. In Section 3, we provide that the propriety of the 

posterior distribution for the reference priors. In Section 4, a real example is 

presented to compare the classical estimator and Bayes estimator.

2. THE REFERENCE PRIORS

Bernardo (1979) introduced determining reference priors in two steps. This 

method has been extended further by Berger and Bernardo (1992) who provided a 

general algorithm to cover situations with multiple groups ordered in terms of 

inferential importance. It is possible to have many different ways to order the 
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parameters in order to obtain many different reference priors. For simplicity, the 

notation {μ1,(μ2,γ) }  will be used to represent the case where there are two 

groups, with μ1  being the most important and μ2  and γ  being of equal 

importance.

We derive the reference priors for different roups of ordering of (μ1,μ2,γ). 

The log-likelihood function of parameters (μ1,μ2,γ)  for the model (1) is given 

by

         l(μ1,μ2,γ) ∝ -n 1 logμ1-n 2logμ2-(n 1+n 2) logγ

-
1
2
γ2μ21 ∑

n 1

i=1
(xi-μ1)

2-
1
2
γ2μ22 ∑

n 2

i=1
(yi-μ2)

2.

        (2)

Based on (2), the Fisher information matrix is given by

I=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

n 1(1+2γ
2)

γ
2
μ
2
1

0
2n 1
γμ 1

0
n 2(1+2γ

2
)

γ 2μ22

2n 2
γμ 2

2n 1
γμ 1

2n 2
γμ 2

2(n 1+n 2)

γ
2

.

The reference priors for different groups of ordering of (μ1,μ2,γ)  are given by 

as follows.

Theorem 1. The reference prior distributions for different groups of ordering of 

(μ1,μ2,γ)  are:

            Group ordering                    Reference prior

           {(μ1,μ2,γ) },              π1∝ μ
-1
1 μ

-1
2 γ

-3
3 (1+2γ

2) 1/2,         (3)

{μ1,μ2,γ }, {μ2,μ1,γ }, {(μ1,μ2),γ },   π2∝ μ
-1
1 μ

-1
2 γ

-1
.                    (4)

 {γ,μ1,μ2 }, {γ,μ2,μ1 }, {γ,(μ1,μ2) },   π3∝ μ
-1
1 μ

-1
2 γ

-1(1+2γ2 ) - 1/2,        (5)

          {μ1,(μ2,γ) },               π4∝ μ
-1
1 μ

-1
2 γ

-2(n 1+n 2+2n 1γ
2) 1/2,   (6)

    {(μ1,γ),μ2 }, {(μ2,γ),μ1},        π5∝ μ
-1
1 μ

-1
2 γ

-2
.                    (7)

Proof. We prove only two cases. Others are similar. We use the notation of 

Berger and Bernardo (1992). The compact subsets were taken to be Cartesian 

products of sets of the form

μ1∈[a 1,b 1],μ2∈[a 2,b 2],γ∈[a 3,b 3].

In the limit a 1,a 2,a 3  will tend to 0  and b 1,b 2,b 3  will tend to ∞.

First we will prove that the reference prior for {(μ1,μ2),γ}  is π2(μ1,μ2,γ)  
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=μ -11 μ
-1
2 γ

-2. For the derivation of the reference prior, from the Fisher 

information,

h 1=n 1n 2μ
-2
1 μ

-2
2 γ

-4(1+2γ2), h 2=2(n 1+n 2)γ
-2

Here, and below, a subscripted K  denotes that is constant and does not depend 

on any parameters but any K  may depend on the ranges of the parameters.

Step 1. Note that

⌠
⌡

b 3

a 3
h 1/22 dγ=

⌠
⌡

b 3

a 3
[2(n 1+n 2)γ

-2] 1/2dγ=[2(n 1+n 2)]
1/2log(b 3/a 3),

so π l2{γ∣μ1,μ2}=K
-1
1 γ

-1,  where K 1= log(b 3/a 3).

Step 2. Now

E
l
1{ logh 1∣γ} =

⌠
⌡

b 3

a 3
K
-1
1 γ

-1
log{n 1n 2μ

-2
1 μ

-2
2 γ

-4
(1+2γ

2
}dγ

= log{μ -21 μ
-2
2 }+K 21.

It follows that

π l1{μ1,μ2}= exp[E
l
1 { logh 1∣γ}/2]=μ

-1
1 μ

-1
2 exp{K 21/2 }.

Thus π l1{μ1,μ2,γ }=K
-1
3 μ

-1
1 μ

-1
2 γ

-1, where K 3= log(b 3/a 3)exp{K 21/2}. The 

reference prior is thus

π1(μ1,μ2,γ)∝μ
-1
1 μ

-1
2 γ

-1.

Second we will prove that the reference prior for {μ1,μ2,γ }  is π2(μ1,μ2,γ)  

=μ -11 μ
-1
2 γ

-1. For the derivation of the reference, from the inverse of the Fisher 

information,

h 1=
n 1(n 1+n 2)(1+2γ

2
)

μ21γ
2(n 1+n 2+2n 1γ

2)
,h 2=

n 2(n 1+n 2+2n 1γ
2
)

(n 1+n 2)μ
2
2γ
2 ,h 3=2(n 1+n 2)γ

-2
.

Step 1. Note that

⌠
⌡

b 3

a 3
h 1/23 dγ=

⌠
⌡

b 3

a 3
[2(n 1+n 2)γ

-2] 1/2dγ=[2(n 1+n 2)]
1/2log(b 3/a 3),

so π l3{γ∣μ1,μ2}=K
-1
1 γ

-1, where K 1= log(b 3/a 3).

Step 2. Now

El2{ logh 2∣μ1,μ2} =
⌠
⌡

b 3

a 3
K -11 γ

-1log{
n 2(n 1+n 2+2n 1γ

2)

(n 1+n 2)μ
2
2γ
2 }dγ

= log{μ -22 }+K 21.

It follows that

⌠
⌡

b 2

a 2
exp[E

l
2 { logh 2∣μ1,μ2 }/2]dμ2= exp{K 21/2} log(b 2/a 2).

Hence π
l
2{μ2,γ∣μ1}=K

-1
2 μ

-1
2 γ

-1
,  where K 2= log(b 2/a 2) log(b 3/a 3).
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Step 3. Now

E
l
1{ logh 1∣μ1} =

⌠
⌡

b 2

a 2

⌠
⌡

b 3

a 3
K
-1
2 μ

-1
2 γ

-1
log {

n 1(n 1+n 2)(1+2γ
2
)

μ21γ
2(n 1+n 2+2n 1 γ

2)
}dγdμ2

= K 31+ log {μ
-2
1 }.

So

⌠
⌡

b 1

a 1
exp[El1 { logh 1∣μ1}/2]dμ1= exp{K 31/2 } log(b 1/a 1).

Thus π l1{μ 1,μ2,γ }=K
-1
3 μ

-1
1 μ

-1
2 γ

-1
3 ,  where K 3= log(

b 1
a 1
) log(

b 2
a 2
) log(

b 3
a 3
). 

The reference prior is thus

π1(μ1,μ2,γ) ∝μ
-1
1 μ

-1
2 γ

-1.

This completes the proof. □

3. PROPRIETY OF POSTERIORS

We investigate the propriety of posteriors for the reference priors in the 

Theorem 1. The following theorem can be proved.

Theorem 2. The posterior distribution of (μ1,μ2,γ)  under the reference prior 

(3), (5) and (7) is proper. But the posterior distribution of (μ1,μ2,γ)  under the 

reference prior (4) and (6) is improper.

Proof. We prove only two cases. Others are similar. Firstly we will prove that 

the posterior distribution of (μ1,μ2,γ)  under the reference prior (7) is proper. 

Under the reference prior (7), the joint posterior for μ1,μ2,γ  given x, y  is

      π(μ 1,μ 2,γ∣ x, y ) ∝ μ
- ( n1+1)

1 μ
- ( n2+1)

2 γ
- ( n 1+n 2+2)

 × exp{-
∑
n 1

i=1
(xi-μ1)

2

2γ 2μ21
-
∑
n 2

i=1
(yi-μ2)

2

2γ 2μ22
}.

      (8)

Integrating with respect to γ  in (8), then

C 2μ
- ( n1+1)

1 μ
- ( n2+1)

2 [
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
]
-
n 1+n 2+1

2
.

  For μ1>
3
2
|x|  and μ2>

3
2
|y|,
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[
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
]≥
n 1
9
+
n 2
9
.

Thus

⌠
⌡

∞

3
2
|x|

⌠
⌡

∞

3
2
|y|

C 2μ
- (n1+1)

1 μ
- (n2+1)

2 [
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
]
-
n 1+n 2+1

2 dμ1dμ2

≤ ⌠
⌡

∞

3
2
|x|

⌠
⌡

∞

3
2
|y|

C 2μ
- (n1+1)

1 μ
- (n2+1)

2 [
n 1
9
+
n 2
9
]
-
n 1+n 2+1

2 dμ1dμ2

< ∞.

For μ1>
3
2
|x|  and μ2≤

3
2
|y|,

[
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
]≥[

n 1
9
+
∑
n 2

i=1
(yi- y)

2

μ22
].

Thus

⌠
⌡

∞

3
2
|x|

⌠
⌡

3
2
|y|

0
C 2μ

- (n1+1)

1 μ
- (n2+1)

2 [
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
]
-
n 1+n 2+1

2 dμ2dμ1

≤ ⌠
⌡

∞

3
2
|x|

⌠
⌡

3
2
|y|

0
C 2μ

- (n1+1)

1 μ
- (n2+1)

2 [
n 1
9
+
∑
n 2

i=1
(yi- y)

2

μ22
]
-
n 1+n 2+1

2 dμ2dμ1

< ∞.

For μ1≤
3
2
|x|  and μ2≤

3
2
|y|,

[
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
] ≥ [

∑
n 1

i=1
(xi- x)

2

μ21
+
∑
n 2

i=1
(yi- y)

2

μ22
].

Thus

      ⌠
⌡

3
2
|y|

0

⌠
⌡

3
2
|x|

0
C 2μ

- (n1+1)

1 μ
- (n2+1)

2 [
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
]
-
n 1+n 2+1

2 dμ1dμ2

  ≤ ⌠
⌡

3
2
|y|

0

⌠
⌡

3
2
|x|

0
C 2μ

- (n1+1)

1 μ
- (n2+1)

2 [
∑
n 1

i=1
(xi- x)

2

μ21
+
∑
n 2

i=1
(yi- y)

2

μ22
]
-
n 1+n 2+1

2 dμ1dμ2

  = ⌠
⌡

9
4
y
2
S 1

0

⌠
⌡

9
4
x
2
S 2

0
C 3z

n 2-1

2
1 z

n 1-1

2
2 [z 1+z 2]

-
n 1+n 2+1

2 dz 1dz 2,                    (9)

where C 3  is a constant, S 1= ∑
n 1

i=1
(xi- x)

2  and S 2= ∑
n 2

i=1
(yi- y)

2. Let v 1=z 1+z 2  
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and v 2=
z 1

z 1+z 2
. Then the (9) is

⌠
⌡

1

0

⌠
⌡

9
4
( x

2
S 2+ y

2
S 1)

0
C 3v

-
1
2

1 v

n 2-1

2
2 (1-v 2 )

n 1-1

2 dv 1dv 2 <∞.

Thus the posterior distribution of μ1,μ2  and γ  is proper.

Second we will prove that the posterior distribution under the reference prior (4) 

is improper. Under the reference prior (4), the joint posterior for

μ1,μ2,γ  given x, y  is

    π(μ1,μ 2,γ∣ x, y ) ∝ μ
-( n1+1)

1 μ
- (n2+1)

2 γ
- (n 1+n 2+1)

× exp{-
∑
n 1

i=1
(xi-μ1)

2

2γ 2μ21
-
∑
n 2

i=1
(yi-μ2)

2

2γ 2μ22
}.

       (10)

Integrating with respect to γ  in (10), then

C 2μ
- ( n1+1)

1 μ
- ( n2+1)

2 [
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
]
-
n 1+n 2
2
,

where C 2  is a constant. For μ1≤
3
2
|x|  and μ2≤

3
2
|y|,

( x-μ1)
2 < max{ x

2
,( x-

3
2
| x| 2) 2}= t 1, ( y-μ2)

2 < max{ y
2
,( y-

3
2
| y| 2) 2}= t 2

Thus

      ⌠
⌡

3
2
|y|

0

⌠
⌡

3
2
|x|

0
C 2μ

- (n1+1)

1 μ
- (n2+1)

2 [
∑
n 1

i=1
(xi-μ1)

2

μ21
+
∑
n 2

i=1
(yi-μ2)

2

μ22
]
-
n 1+n 2
2 dμ1dμ2

   > ⌠⌡

3
2
|y|

0

⌠
⌡

3
2
|x|

0
C 2μ

-(n1+1)

1 μ
- (n2+1)

2 [
n 1t 1+S 1

μ21
+
n 2t 2+S 2

μ22
]
-
n 1+n 2
2 dμ1dμ2

  = ⌠
⌡

9
4
y
2
(n 1 t 1+S 1)

0

⌠
⌡

9
4
x
2
(n 2 t 2+S 2)

0
C 3z

n 2-2

2
1 z

n 1-2

2
2 [z 1+z 2]

-
n 1+n 2
2 dz 1dz 2,

where C 3  is a constant, S 1= ∑
n 1

i=1
(xi- x)

2  and S 2= ∑
n 2

i=1
(yi- y)

2. Let v 1=z 1+z 2  

and v 2=
z 1

z 1+z 2
. Then the (13) is

  ⌠
⌡

1

0

⌠
⌡

9
4
[ x

2
(n 2 t 2+S 2)+ y

2
(n 1 t 1+S 1)]

0
C 3v

-1
1 v

n 2-2

2
2 (1-v 2 )

n 1-2

2
dv 1dv 2=∞.

Thus the posterior distribution of (μ1,μ2,γ)  under the reference prior (4) is 

improper. This completes the proof.  □
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4. AN EXAMPLE

The data in Table 1 are taken from Nelson (1990) and represent the hours to 

failure of 20 motorettes with a new class-H insulation run at 240
∘
C  and 

220 ∘C. It has been observed by Nelson (1990) that lognormal distribution 

adequately fits at the two temperatures. Note that X  and Y  denote the nature 

logarithm of the failure times in the Table 1. We thus assume that the below data 

come from independent normal distributions.

Table 1: Failure Times at the Two Temperatures

X  ( 240
∘C)

7.0690  7.0690  7.3271  7.3582  7.3883

7.4176  7.4176  7.4460  7.4736  7.5771

Y  ( 220
∘C)

7.4753  7.7981  7.7981  7.7981  7.7981    

7.7981  8.0417  8.0417  8.0417  8.0417

For the equality of the coefficients of variation, the p  value of the score test 

developed by Gupta and Ma (1996) is almost one under the null hypothesis 

H 0:γ 1=γ2  (Gupta, Ramakrishnan and Zhou, 1999). Therefore we assume equal 

coefficients of variation.

The maximum likelihood estimate (MLE) and Bayes estimates (BE) with the 

standard errors in parentheses under square error loss of μ1, μ2  and γ  are given 

in Table 2.

Table 2: MLE and Bayes Estimates of μ1, μ2  and γ  

μ̂ 1                 μ̂ 2                 γ̂

MLE

BE
1

BE 2

BE 3

7.354238 (0.050324)   7.863381 (0.053808)   0.021644 (0.003424) 

7.343060 (0.003528)   7.921796 (0.008072)   0.020989 (0.001872)

7.343052 (0.002593)   7.921889 (0.006056)   0.020898 (0.001380)

7.343048 (0.001906)   7.921939 (0.004607)   0.020848 (0.001016)

BE 1  - reference prior π 3 ; BE
2  - reference prior π 5 ; BE

3  - reference prior π1

From Table 2, it can be seen easily that the Bayes estimators with all three 

different priors are very comparable to the MLE's. For μ1, μ2  and γ, they are 

almost identical in estimations. This example provides empirical evidence that 
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Bayes estimators with reference priors are at least as good as non-Bayesian 

estimators, namely, MLE's, which are asymptotically the best.
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