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Abstract

This article presents a new family of the estimating functions related 
with minimum distance estimations, and discusses its relationship to the 
family of the  minimum density power divergence estimating equations. 
Two representative minimum distance estimations;  the minimum L 2

 

distance estimation and the minimum Hellinger distance estimation are 
studied in the light of the theory of estimating equations. Despite of the 
desirable properties of minimum distance estimations, they are not widely 
used by general researchers, because theories related with them are 
complex and are hard to be computationally implemented in real problems. 
Hopefully, this article would be a help for understanding the minimum 
distance estimations better.

Keywords : Density power divergence; estimating equations;  Hellinger 
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1. Background and Motivation

In most of the previous works, the minimum distance estimation (MDE) has 

been studied by focusing on  estimators, but in this article we focus rather on 

estimating equations which produce estimators. The theory of estimating equations 

has been well established since Godambe (1960), and has been a hot topic in the 

field of estimation for a while (Godambe and Thomson (1974), Godambe (1976)). 

By investigating the MDE in the estimating equation's point of view, we are 
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given a new tool to tackle the MDE estimation to enhance its generality and 

applicability. In the section 2.1 we provide a general form of estimating equations 

based on MDE  covering both the minimum Hellinger distance estimation (MHD 

estimation) and the minimum L2 distance estimation (ML2D estimation). The 

MHD estimation (section 2.2) and the ML2D estimation (section 2.3) are studied 

one by one in the light of the theories of estimating equations.  We also  show 

that the proposed estimating equations turn out to be as same as those obtained 

by minimizing the density power divergence (Basu et al., 1998).

 2. Properties of estimation equations by minimum distance 

estimations

2.1 General Form

Given an i.i.d. random sample, X 1,X 2,…,X n
, having a density f θ(x), let 

f n(x)  be a density estimator for f θ(x)  such as

f n(x)=
1
n ∑

1
h
k(
x-X i

h ),  

where k(⋅)  is a kernel and h  is a bandwidth. Define a smoothed density as 

f *θ(x)=
⌠
⌡f θ(x-y)k(y)dy

 and consider a family of distances between a smoothed 

density  and a corresponding density estimator indexed by a parameter β  as 

{⌠⌡( f 1/βn (x)-f * 1/βθ (x))
2dx, 1≤β≤2}   

The distance we define here is differ from an usual distance by means of using 

a smoothed density in place of a density itself. Since E[ f n(x)]= f
*
θ (x), it really 

helps us to reduce fair amount of mathematical complexity in theories. 

The Hellinger distance ( β=2) and the squared distance (or L 2  distance ( β=1)) 

are  members of this family.   The minimum distance estimator ( θ ̂) is defined 

as a solution to

∇ θ
⌠
⌡( f

1/β
n (x)- f

* 1/β
θ (x) )

2
dx=-2⌠⌡( f

1/β
n (x)-f

* 1/β
θ (x))

1
β

∇ θf
*
θ(x)

f * ( 1-1/β)θ (x)
dx=0,

where ∇ θ
 represents a derivative w. r. t. θ.  

 

Theorem 2.1.  For 1≤β≤2

(1)⌠
⌡( f

1/β
n (x)-f

* 1/β
θ (x))

1
β

∇ θf
*
θ(x)

f
* ( 1-1/β)
θ (x)

dx
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can be reduced to

1
β
⌠
⌡( f n (x)-f

*
θ (x)) f

* (-1+1/β)
θ (x)

∇ θf
*
θ(x)

f * ( 1-1/β)θ (x)
dx.

Proof. Consider the following series expansion;

(2)

f
1/β
n (x)- f

* 1/β
θ (x) =

1
β
(f n (x)-f

*
θ (x)) f

* (-1+1/β)
θ (x)

+
1
2β
(-1+

1
β
)(f n(x)-f

*
θ (x))

2 f * (-2+1/β)(x)θ

+o( ( f n(x)-f
*
θ (x))

3).

and put (2) into (1) then the second term in the resulting integral,

⌠
⌡
1
2β
(-1+

1
β
)( f n(x)-f

*
θ (x))

2 f * (-2+1/β)θ (x)
∇ θf

*
θ(x)

f * ( 1-1/β)θ (x)
dx

=
1
2β
(-1+

1
β
)⌠⌡(

f n(x)-f
*
θ (x)

f
*
θ(x) )

2

f * (-1+2/β)θ (x)∇ θf
*
θ(x)dx

→ 0 in probability as n→∞,

since both f n(x)-f
*
θ (x)/f

*
θ(x)→0 as  n→∞  and that f

* (-1+2/β)
θ (x)∇ θ f

*
θ(x)  is 

bounded for -1+2/β≥0.  Similarly, we can show that the higher order terms  

go to 0 in probability.                                                        □ 

Also, we can rewrite the second integral in Theorem 2.1, 

1
β
⌠
⌡( f n (x)-f

*
θ (x))f

* (-1+1/β)
θ (x)

∇ θf
*
θ(x)

f * ( 1-1/β)θ (x)
dx

as

1
nβ ∑

⌠
⌡{ 1h k(

x-X i

h )-f *θ(x)}f * (-1+2/β)θ (x)∇ θlog f
*
θ(x)dx,

which leads to the following definition.

Definition 2.1. Define a general form of the estimating equation for  1≤β≤2  

as

(3)g(y)=⌠⌡{ 1h k(
x-y
h )-f *θ (x) }f * (-1+2/β)θ (x)∇ θ log f

*
θ(x)dx.

 If β=2  then (3) becomes (5), which is an estimating equation producing 

efficient but non-robust estimators (section 2.2). If β=1  then (3) becomes the 

estimating equation (6), which is an M-estimating equation producing a robust  

but not fully efficient estimator (section 2.3).                                  □
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Figure 1. Estimating equations for μ  .

Figure 1 displays the estimating equation g(y)  for different values of β, when 

a kernel is Gaussian and a density is N(μ,σ2)  with σ  and h being fixed. When 

β  is 2, g(y)= y, which is known to produce a non-robust but fully efficient 

estimator (so called, least squares estimator / MLE under Normal distribution). 

For 1≤β< 2, g(y)  displays redescending nature producing robust but not fully 

efficient estimators. It can be claimed that the value of β  controls trade-off 

between efficiency and robustness.

 

Remark 2.1. The estimating equation based on a density power divergence 

(Basu, et al., 1998) can be reproduced by the estimating equation (3) as follows;

Consider the first part in (3).  Let z=(x-y)/h  and do Taylor Series 

expansion about y, then we have

⌠
⌡
1
h
k( x-yh )f * (-1+2/β)θ (x)∇ θlog f

*
θ(x)dx

= ⌠
⌡k(z)f

* (-1+2/β)
θ (y+hz)∇ θlog f

*
θ(y+hz)dz                                    

= ⌠
⌡[k(z) f

* (-1+2/β)
θ (y)+hz∇ yf

* (-1+2/β)
θ (y)+…][ ∇ θlog f

*
θ (y)+hz∇ y∇ θlog f

*
θ (y)+…]dz    

= f * (-1+2/β)θ (y)∇ θlog f
*
θ(y)
⌠
⌡k(z)dz+o(h)                                       

= f * (-1+2/β)θ (y)∇ θlog f
*
θ(y)+o(h).

Hence, g(y)  in Definition 2.1 turns out
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f * (-1+2/β)θ (y)∇ θlog f
*
θ(y)+

⌠
⌡f

* ( 2/β)
θ (x)∇ θ log f

*
θ(x)dx+o(h).

Since  f
*
θ(x)→f θ(x)  as  h→0, then g(y)  becomes 

u θ(y)f
(- 1+2/β)
θ (y)-⌠⌡u θ(y)f

2/β
θ (y)dy,

where u θ(y)  is the maximum likelihood score function. The above equation turns 

out to be as same as the ψ(y,θ)  (Basu, et al., 1998) with 2/β=1+α;

ψ(y,θ)=u θ(y)f
α
θ (y)-

⌠
⌡u θ(y)f

1+α
θ (y)dy.   

Basu, et al. (1998) claimed that the degree of compromise between efficiency and 

robustness would be controlled by the tuning parameter α. Choices of α  near 

zero, i. e. β  near two, are known to afford considerable robustness while retaining 

efficiency close to that of maximum likelihood.                                 □

2.2 Hellinger Distance : β=2

The Minimum Hellinger distance estimator based on Basu and Lindsay (1994) is 

a solution to 

(4)∇ θ
⌠
⌡( f

1/2
n (x)-f

* 1/2
θ (x))

2dx=-2⌠⌡(f
1/2
n (x)- f

* 1/2
θ (x))

∇ θf
*
θ(x)

f
* 1/2
θ (x)

dx=0.

For b≥0, a> 0  we have an algebraic identity 

b 1/2-a 1/2= (b-a)/2a 1/2-(b-a) 2/[2a 1/2(b 1/2+a 1/2) 2].   

By combining this identity with (4),  we have

⌠
⌡( f

1/2
n (x)-f

* 1/2
θ (x))

∇ θf
*
θ(x)

f
* 1/2
θ (x)

dx=
1
2
⌠
⌡(f n (x)- f

*
θ(x))

∇ θf
*
θ(x)

f
*
θ(x)

dx+R n,  

where

R n=-(f n (x)-f
*
θ(x))

2/[2f * 1/2θ (x) (f
1/2
n (x)+ f

* 1/2
θ (x))

2 ].   

Suppose  Rn= o p(1), which is in fact true by Beran (1977), then

⌠
⌡( f

1/2
n (x)-f

* 1/2
θ (x))

∇ θf
*
θ(x)

f
* 1/2
θ (x)

dx and  
1
2
⌠
⌡( f n (x)- f

*
θ(x))

∇ θf
*
θ(x)

f
*
θ(x)

dx

are asymptotically equivalent, and we have

  ⌠
⌡( f n (x)- f

*
θ(x))

∇ θf
*
θ(x)

f
*
θ(x)

dx=
1
n ∑

⌠
⌡
1
h
k(
x-X i

h )∇ θlog f
*
θ(x)dx.

Remark 2.2. The estimating equation based on the Hellinger distance, 
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(5)
g(y) = ⌠

⌡
1
h
k( x-yh )∇ θlog f

*
θ(x)dx

= ⌠
⌡{ 1h k(

x-y
h )-f *θ (x) }∇ θlog f

*
θ(x)dx,

 

which is the g(y)  in Definition 2.1 with β=2, is an unbiased optimal estimating 

equation when h→0. Proofs are in Appendix.                                  □

Example 2.1. Suppose that a kernel is Gaussian, and that  the model density is 

N(μ,σ
2
), then f

*
θ(x)  is N(μ,h

2
+σ

2
). Therefore, we have  

g(y)=⌠⌡
1
h
k( x-yh )∇ θlog f

*
θ(x)dx=[ ](y-μ)/(h

2
+σ

2
)

(-h
2
-σ

2
+(y-μ)

2
)/2(h

2
+σ

2
)
2

which is a vector of score functions of N(μ,σ2), which is unbiased and optimal, 

in case of h→0.                                                             □

 2.3 L 2
 Distance : β=1

The minimum L 2
 distance estimator is solution to

∇ θ
⌠
⌡( f n(x)-f

*
θ(x))

2
dx=-2⌠⌡(f n(x)- f

*
θ(x))∇ θf

*
θ(x)dx=0,  

and we have

⌠
⌡(f n(x)- f

*
θ(x))∇ θ f

*
θ(x)dx=∑

⌠
⌡{ 1h k(

x-X i

h )-f *θ(x) }∇ θf
*
θ(x)dx.

Remark 2.3.  The estimating equation based on minimization of L 2
 distance as

(6)g(y)=⌠⌡{ 1h k(
x-y
h )-f *θ(x) }f *θ(x)∇ θlog f

*
θ(x)dx.

which is the g(y)  in Definition 2.1 with β=1, is a robust estimating function, 

but asymptotic optimality is not naturally given as shown as follows: 

Define the matrices J g=E[gg
T
]  and M g=E[∂ g/∂θ], and then the efficiency 

matrix is Eff (g)=M -1
g J g(M

-1
g )

T.  

The expectation of the first derivative of the estimating equation in (6),

M g = E[⌠⌡{ 1h k(
x-y
h )-f *θ(x)}∇ 2

θf
*
θ(x)dx-

⌠
⌡∇ θf

*
θ(x)∇ θf

*
θ(x)dx ]

= ⌠
⌡[E{ 1h k(

x-y
h )}-f *θ(x) ]∇ 2

θf
*
θ(x)dx-

⌠
⌡∇ θf

*
θ(x)∇ θf

*
θ(x)dx

→ 0-⌠⌡∇ θf
2
θ(x)dx,

which is not equal to - I(θ)(=E[ ∇ θlog f
*
θ(x)

2
])  as h→0.                  □

Example 2.2.  Suppose that a kernel is Gaussian, and that f  is N(μ,σ
2). After 
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dropping unnecessary constant factors, we have

g(y)=
ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳︳︳

(y-μ)exp { -(y-μ)
2

2(2h 2+σ2) }
{-1+ (y-μ)2

2h 2+σ2 }exp {
-(y-μ)2

2(2h 2+σ2) }+{
2h 2+σ2

2h 2+2σ2 }
3/2

.

We can not attain optimal asymptotic efficiency with g(y)  even if h→0,  

because g(y)  is far from the score function of the normal density, due to the 

factor exp(⋅).                                                              □

Figure 2.  Estimating equations for μ  (solid) 

and  σ2(dotted).

y

-4 -2 0 2 4

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

y

-4 -2 0 2 4

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2 displays estimating equations given in Example 2.2 with h  and σ  

being fixed. They clearly show redescending nature of M-estimating functions. 

Each equation is of redescending types of M-estimating equations producing 

robust estimators for μ  and σ
2, respectively. Robustness of the estimators by the 

above estimating equation g(y)  is ensured, while losing some efficiency. 

                                           

Remark 2.4. If we redefine g s(y)=g(y) E[∂g(y)/∂θ]
-1  then we have

E[g s(y)]=0, since E[h
-1k {h -1(x-y) }]= f *θ (x). Therefore, g s(y)  is an 

unbiased estimating equation. Optimality is trivial because the standardized 

estimating equation is the optimal estimating equation, among unbiased estimating 

equations (Godambe, 1960).                                                   □
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2.4 Optimality for a bandwidth

As we can notice from Example 2.1 and 2.2, the estimators based on g(y)  are 

M-estimators.   Recall that an M-estimator is optimal V-robust  (Hampel et al., 

1986) when it minimizes V(ψ,F)  for a given upper bound on κ
*(ψ,F)( 

change-of-variance sensitivity) where ψ  is an M-estimating equation.  Hall and 

Marron (1991) have shown that the best possible relative rate of convergence to 

the optimum for the data driven bandwidth selector is n -1/2. Moreover, Fan and 

Marron (1992) have obtained the 'Fisher like' lower bound of the relative errors of 

bandwidth selector, which is given by 

σ2(f)=
4
25

ꀎ

ꀚ

︳︳︳︳︳︳

⌠
⌡(f

( 4) ) 2f

{⌠⌡( f '')
2 } 2
-1

ꀏ

ꀛ

︳︳︳︳︳︳
.   

Kim, Park and Marron (1994) give bandwidth selectors, h, which achieve the 

above best rate and best constant in the sense that for a fixed bandwidth h 0

n
1/2
(h/h 0-1)⇒N(0,σ

2
(f)).

Since V(g(y;h),F)  is in terms of h, we can discuss the optimality of h   in 

the light of density estimation. Expand the asymptotic variance of an estimating 

equation in terms of the bandwidth for a fixed bandwidth h 0;

 

n {V(g(y;h),F)-V(g(y;h 0),F) } =

(h-h 0)V '(g(y;h),F)| h= h 0 +
1
2
(h-h 0)

2V ''(g(y;h),F)| h= h 0+….

Suppose we neglect higher terms except the first order term, we have

n 1/2h -10 V(g(y;h),F)-V(g(y;h 0),F) ≅

n 1/2(h/h 0-1)V '(g(y;h),F)| h= h 0 ⇒ N(0,σ 2(f)V ' 2(g(y;h),F )| h= h 0).

 The variance  is in the form of  `constant times σ 2(f)', so that optimality of 

h  in our problem can be consider in the same manner as we deal with the 

optimality in density estimation. Therefore, for example, the plug-in type 

bandwidth proposed by Sheather and Jones (1991) would be a good optimal choice 

for h.

3. Conclusions

A new family of the estimating equations indexed by a parameter β  covers 

various estimating equations producing  robust and/or efficient estimators. The 

larger the β  is, the more we get efficiency, and the smaller the β  is, the more 
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we get robustness. The two representative minimum distance estimations;  the 

minimum L 2
 distance estimation and the minimum Hellinger distance estimation 

are studied by the proposed family of the estimating equations. The relation 

between the minimum distance estimation and the estimation by minimizing a 

density power divergence by Basu, et al. (1998) is presented. We hope that this 

article would be a little help for people to understand minimum distance 

methodology.

 4. Appendix

First, the expectation of the estimating equation (5),

E[g(y)] = E[⌠⌡ 1
h
k( x-yh )∇ θlog f

*
θ(x)dx]=⌠⌡E[ 1h k(

x-y
h )]∇ θlog f

*
θ(x)dx

= ⌠
⌡f

*
θ(x)

∇ θf
*
θ(x)

f *θ(x)
dx=⌠⌡f

*
θ(x)∇ θlog f

*
θ(x)dx

= ⌠
⌡∇ θf

*
θ(x)dx=∇ θ

⌠
⌡f
*
θ(x)dx=0,

 

which implies that the estimation function is unbiased.

Furthermore, since we have f
*
θ(x)→f θ(x)  as h→0  

M g = E[∂g/∂θ]=E [⌠⌡ 1
h
k( x-yh )∇ 2

θlog f
*
θ(x)dx]

= ⌠
⌡f

*
θ(x)∇

2
θlog f

*
θ(x)dx=

⌠
⌡f

*
θ(x) (

∇2
θf
*
θ(x)f

*
θ(x)-(∇ θf

*
θ(x))

2

f * 2θ (x) )dx
= ⌠
⌡∇

2
θf
*
θ(x)dx-

⌠
⌡(
∇ θf

*
θ(x)

f *θ(x) )
2

f *θ(x)dx=0-
⌠
⌡(
∇ θf

*
θ(x)

f *θ(x) )
2

f *θ(x)dx

→ -⌠⌡(
∇ θf θ(x)

f θ(x) )
2

f θ(x)dx=-E[(∇ θ log f θ(x) )
2]=-I(θ)

as h→0. 

Hence, if J g=E[gg
T]→I(θ) as  h→0, then Eff (g)→I -1(θ), so that g(y)  

becomes an unbiased  optimal estimating equation.                             □
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