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Abstract

Recently, Tanaka(1988) derived two influence functions related to an 

eigenvalue problem (A-λ s I) v s= 0  of real symmetric matrix A and 

used them for sensitivity analysis in principal component analysis. In this 
paper, we deal with the perturbation expansions up to quadratic terms of 
the same functions and discuss the application to sensitivity analysis in 
principal component regression analysis(PCRA). Numerical example is 
given to show how the approximation improves with the quadratic term.
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1. Introduction 

Many statisticians discussed sensitivity analysis in ordinary multiple regression, 

and some authors including Pregibons(1981), Williams(1987), Walker and Birch 

(1988), Shin et al.(1989, 1990, 1994) discussed the same topic in other types of 

regression such as logistic regression, generalized linear model, ridge type 

regression, principal component regression, latent root regression and logistic 

principal component regression. Radhakrishnan and Kshirsagar(1981), Tanaka 

(1984), Critchley(1985), Jolliffe(1986), Pack, Jolliffe and Morgan(1988), 

Bénasséni(1988) and others discussed sensitivity analysis in principal component 

analysis and related multivariate methods. The essential part of their approaches 

to compute the influence functions for eigenvalues and eigenvectors derived from 
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the perturbation theory of eigenvalue problems. Tanaka(1988, 1989) has derived 

explicitly some influence functions, considering the influence on the subspace 

spanned by a specified set of eigenvectors. In this paper we derive quadratic 

perturbation expansions for two functions of eigenvalues and eigenvectors, and 

apply them to sensitivity analysis in PCRA.

In section 2 we briefly review the perturbation theory of eigenvalue problems 

and show the expansions up to the quadratic terms for the eigenvalues and 

eigenvectors. In section 3 for two functions of eigenvalues and eigenvectors, after 

reviewing the linear expansions obtained by Tanaka(1988), we derive the 

corresponding quadratic terms. In section 4 we treat their application to sensitivity 

analysis in PCRA. Numerical example is given for this method to show the 

usefulness of the quadratic term. 

2. Influence functions related to eigenvalue problems 

We consider an eigenvalue problem such as

 (A-λ s I) v s= 0,                                   (2.1)

where A  is a p×p  real symmetric matrix, λ s  is the s-th eigenvalue and v s  is 

the associated eigenvector. We consider a small perturbation in this eigenvalue 

problem, as follows :

A ↦ A(ε )=A+εA ( 1) +(ε2 /2)A ( 2) +O(ε 3 ).             (2.2)
Then the eigenvalues and eigenvectors can be expanded as

λ s (ε )= λ s+ε λ
( 1)
s +(ε

2 /2)λ ( 2)s +O(ε
3 ),                (2.3)

v s (ε )=v s+ε v
( 1)
s +(ε

2
/2)v

( 2)
s +O(ε

3
).               (2.4)

Here, we suppose, without any loss of generality, that we are interested in the 

first q  eigenvalues (q≤p). Then we have the following formulas(see, Tanaka, 

1984).
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where

 a ( k)rs = v
T
r A

( k) v s,   k=1, 2,                            (2.6)

and δ rt  the Kronecker delta. Note that the right-hand sides from the second to 
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the fourth equations of (2.5) contain the terms (λ s-λ r )
-1,r=1,…,p, r≠ s, and 

then these formulas become numerically inappropriate when there exist some λ r's  

which are nearly equal to λ s .

3. Quadratic expansion of the functions of

 eigenvalues and eigenvectors

Shin et al.(1989) studied sensitivity analysis in PCRA. There the following 

matrix, which is function of eigenvalues and eigenvectors, plays an important role.

R=∑
q

s=1
λ-1s v s v

T
s .                           (3.1)

We shall consider the perturbation expansion of this matrix, and try to derive the 

quadratic expansion

R(ε )=R+εR ( 1)+(ε2 /2)R ( 2) +O(ε3 ),                  (3.2)
corresponding to the perturbation given by (2.2)

The coefficient R ( 1) , which is equivalent to the influence function, was already 

obtained by Shin et al.(1989) as

R ( 1) = - ∑
q

s=1
∑
q

r=1
λ- 1s λ

- 1
r ( v

T
s A

( 1) v r )v s v
T
r

  +∑
q

s=1
∑
p

r= q+1
λ
- 1
s (λ s-λ r )

- 1
( v

T
s A

( 1) v r )(v s v
T
r+ v r v

T
s ).      (3.3)

Now we shall derive the quadratic terms. By means of (2.5) the second 

derivative can be formulated as

  R
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q
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λ
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s v s v

T
s )
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2 -λ-2s λ
( 2)
s )v s v

T
s -2 λ
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s λ

( 1)
s ( v
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s v

T
s + v s v

( 1)
T
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( 1)T
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s v
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s )} ,                     (3.4)

where the superscript (2) indicates the second derivative.
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4. Application to Sensitivity Analysis in Principal

 Component Regression Analysis

4.1 Principal Component Regression 

We consider ordinary regression model, which is expressed as

                  y= 1β0+Xβ+ε ,     ε∼N ( 0,σ
2 I ),               (4.1)

where y  is an (n ×1) vector of the dependent variable, 1  is an (n ×1) vector 

whose element are all 1's, X  is an (n ×p )  matrix of the independent variables 

and ε  is an (n ×1)  vector of error terms. Denote a mean vector and a 

covariance matrix by μ  and Φ  with subscripts indicating the related variables, 

i.e. μ x= the mean vector of x , Φ xx=the covariance matrix of x , Φ xy=the 

covariance matrix between x  and y , etc.

The correlation matrix is decomposed as

           Γ xx=(Φ xx )
-
1
2

D Φ xx (Φ xx )
-
1
2

D =V 1 Λ1V
T
1 +V 2Λ2V

T
2 ,          (4.2)

by using the spectral decomposition, where subscript D  implies "diagonal", Λ1  

and Λ2  are the diagonal matrices of the eigenvalues of interest and the remaining 

eigenvalues, respectively, and V 1  and V 2  are the matrices of the associated 

eigenvectors. The q  principal components which we are interested in can be 

expressed by

z=VT1 (Φ xx )
-
1
2

D ( x -μ x ).

Consider the regression of y  on ( 1 , z T ). Using the ordinary least square 

method, the coefficients become

( )α 0α = ( )1 0 T

0 Λ1

-1ꀌ

ꀘ

︳︳︳

ꀍ

ꀙ

︳︳︳

μ y

VT1 (Φ xx )
-
1
2

D Φ xy

=ꀌ

ꀘ

︳︳︳

ꀍ

ꀙ

︳︳︳

μ y

Λ -1
1 V

T
1 (Φ xx )

-
1
2

D Φ xy

.

 The coefficient vector for the standardized original variables 

x *=(Φ xx )
-
1
2

D ( x -μ x ) is obtained as

              β
*
=V 1 Λ

-1
1 V

T
1 (Φ xx )

-
1
2

D Φ xy.                             (4.3)  

4.2 Sensitivity Analysis

In the preceding section, quadratic perturbation expansions was derived for the 

function of eigenvalues and eigenvectors of a real symmetric matrix. 
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Using the influence function R ( 1)based on the linear perturbation expansion 

Shin et al.(1989) proposed a method of sensitivity analysis in PCRA. Here we 

apply the quadratic expansion derived in the preceding section to PCRA and 

investigate how the approximation improves.

Consider PCRA based on a p×p  correlation matrix Γ . Let λ 1,…,λ p

(λ 1≥…≥λ p )  be the eigenvalues and v 1,…,v p  be the associated eigenvectors 

of Γ , and suppose we are interested in the largest q  eigenvalues. Then the 

matrix R  defined by (3.1) indicates the part corresponding to the q  eigenvalues 

of interest in the spectral decomposition of Γ .

First we study the influence of a small change of data on the standard 

regression coefficient vector β
* . Taking the first derivatives of the both sides of 

(4.3) with respect to ε , we obtain

                                                                              

  
β* ( 1) =(V 1 Λ

-1
1 V

T
1 )
( 1) (Φ xx )

-
1
2

D Φ xy+V 1Λ
-1
1 V

T
1 { (Φ xx )

-
1
2

D }
( 1)

Φ xy

+V 1 Λ
-1
1 V

T
1 (Φ xx )

-
1
2

D Φ
(1)
xy ,                                       (4.4)

where the superscript (1) indicates the first derivative or influence function. The 

quantity (V 1 Λ
-1
1 V

T
1 )
( 1)  in the right hand side can be calculated as follows.

 
(V 1 Λ

-1
1 V

T
1 )
( 1) =- ∑

q

s=1
∑
q

r=1
λ-1s λ

-1
r [ v

T
s Γ

( 1)
xx v r ]v s v

T
r                          

+ ∑
q

s=1
∑
p

r= q+1
λ-1s (λ s-λ r )

- 1 [ v Ts Γ
( 1)
xx v r ](v s v

T
r+ v r v

T
s ) .          (4.5)

 

As in Tanaka(1988), he introduced a perturbation

                                                                                

            F ↦ F̃=(1-ε) F+ε δ x,                                   (4.6)  

where F  is the unperturbed cdf and δ x  is the cdf of a unit point mass at x , 

and try to evalute the corresponding changes from R  to R (ε ).

From the preceding section, R (ε)  can be expanded as the power series (3.2)  

with the coefficient given by (3.3) through (3.4), where a ( k )r s  is defined as (2.6)    

with H
( 1)  and H

( 2)  replaced by the coefficients Σ
(1)  and Σ

(2)  of the linear and 

quadratic terms of the expansion of the perturbed covariance matrix Σ (ε) . As 

shown in Critchley(1985), Σ (ε) is expanded as follows.

        Σ (ε) = Σ+ε Σ (1)+(ε2 /2 )Σ ( 2) ,                               (4.7)
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where 

       Σ (1) = ( x-μ ) ( x-μ )T-Σ ,                                   (4.8)

       Σ
(2)
=-2 ( x-μ ) ( x-μ )

T
.                                    (4.9)

The formulation above is based  on the theoretical cdf F  and contains 

population parameters μ  and Σ . If our concern  is, for instance, the change 

produced by the omission of a certain x i , the theoretical cdf F  and the 

population parameters μ  and Σ  should be replaced by the empirical cdf F̃  and 

the sample counterparts x  and S , respectively, and the perturbation parameter 

ε  should be set ε=-1 /(n-1) .

5. Numerical Performances and Discussion

To illustrate our procedure we apply our method of sensitivity analysis to the 

Hill's data(1977), which was analyzed by Walker and Birch(1988) with Ridge 

regression. The data set is related to the performance of a computerized system 

for processing military personnel action forms. There are 15 observations of six 

independent and one dependent variables.

First, we applied PCA based on the correlation matrix to the independent 

variables. Then we select the first four PC's, because the remaining eigenvalues 

were very small( λ1=3.80 , λ2=1.06 , λ3=0.62 , λ4=0.43 ≫ λ5=0.06 , λ6=0.03 ).
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         (i) linear approximation          (ii) quadratic approximation

     Fig. 1. Exact versus approximate values of ∥(R(ε)-R )/ε∥
(exact : vertical, approximate : horizontal)

Next, we study the usefulness of the proposed quadratic terms. For this 

purpose, we investigate the relationship between EIF(Empirical Influence Function :
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(V 1 Λ
-1
1 V

T
1 )
( 1) ; first derivative, and (V 1 Λ

-1
1 V

T
1 )
( 2) ; second derivative) and the 

so called SIF(Sample Influence Function). By using the influence function, we can 

evaluate the influence of a small perturbation of data. However, since β*( 1)  is 

vector-valued, it is useful to construct scalar-valued summary statistics based on 

it. the simplest way of summarization may be to take the Euclidean norm, i.e. 

∥β*(1)∥ .

 Now, let us consider the relative changes (R(ε)-R )/ε , when each 

observation is omitted in turn. For this purpose from (3.2), the approximate  

relative changes based on the linear approximation R
( 1) , and this based on the 

quadratic approximation R ( 1)+(ε /2 )R ( 2) , along with the exact values, were 

computed for each observation. Figure 1 shows the scatter diagram of the 

Euclidean norms of the exact versus approximate changes. From this figure we 

can say that, though the linear approximation maybe enough for the purpose to 

detect influential observations, the approximation improves considerably by taking 

the quadratic term into account. 
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