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A convergence of fuzzy random variables1)

Dug Hun Hong2)

Abstract

In this paper, a general convergence theorem of fuzzy random variables 
is considered.  Using this result, we can easily prove the recent result of 
Joo et al. (2001) and generalize the recent result of Kim(2000).
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1. Introduction

In recent years, strong laws of large numbers for sums of fuzzy random 

variables have received much attention by several people. A SLLN for sums of 

i.i.d. fuzzy random variables was obtained by Kruse (1982), and a SLLN for sums 

of independent fuzzy random variables was obtained  by Miyakoshi and Shimbo 

(1984), Klement, Puri and Ralescu (1986). Also, Inoue (1991) obtained a SLLN for 

sums of independent tight fuzzy random sets, and Hong and Kim (1994) proved 

Marcinkiewicz-type law of large numbers. Many other papers are related with this 

topic. Recently, Joo, Lee and Yoo (2001) generalized a strong law of large 

numbers for sums of stationary and ergodic processes to the case of fuzzy 

random variables and Kim (2000) obtained a strong law of large numbers for 

sums of levelwise independent and levelwise identically distributed fuzzy random 

variables.

In this paper, we consider a general convergence theorem of fuzzy random 

variables, Using this result, we can easily prove the result of Joo et al. (2001) and 

generalize the result of Kim (2000). Section 2 is devoted to describe some basic  

concepts of fuzzy random variables. Main results are given in Section 3.

2. Preliminaries
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Let R  denote the real line. A fuzzy number is a fuzzy set u :R→[0,1]  with 

the following properties;

(1) u  is normal, i.e., there exists x∈R  such that u( x ) = 1.

(2) u  is upper semicontinuous.

(3) supp u= cl{x∈R | u (x) > 0 }  is compact.

(4) u  is a convex fuzzy set, i.e., u (λx+(1-λ)y)≥ min( u (x), u (y))  for 

x,y∈R  and λ ∈[0,1]

Let F(R)  be the family of all fuzzy numbers. For a fuzzy set u, if we define

L α u ={
{x | u (x) ≥α}, 0< α≤1,

supp u, α=0,

then, it follows that u  is a fuzzy number if and only if L 1 u≠φ  and L α u  is a 

closed bounded interval for each α ∈[0,1]. From this characterization of fuzzy 

number, a fuzzy number u  is completely determined by the end points of the 

intervals L α u =[u
1
α,u

2
α].

The following theorem(see Goetschel and Voxman, 1986) implies that we can 

identify a fuzzy number u  with the parameterized representation

{(u1α,u
2
α) | 0≤α≤1}.

Theorem 2.1. For u ∈F(R), denote u 1(α)=u1α  and u
2(α)=u2α  by 

considering as functions of α ∈[0,1]. Then

(1) u 1  is a bounded increasing function on [0,1].

(2) u
2  is a bounded increasing function on [0,1].

(3) u 1(1) ≤u 2(1).

(4)  u 1and u 2  are left continuous on [0,1]  and right continuous at 0.

(5) If v
1and v

2  satisfy above (1)-(4), then there exists a unique v ∈F(R)  

such that v1α= v
1(α),v2α=v

2 (α).

The addition and scalar multiplication on F(R)  are defined as usual;
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( u+ v)( z)= sup x+ y= zmin( u( x ), v( x)),

(λ u)( z )={
u( z/λ), λ≠0,

0, λ=0,

for u, v∈F(R)  and λ ∈R, where 0= I {0}  is the indicator function of {0 }. It 

follows that if u= {(u
1α
,u

2α
) | 0≤α≤1}  and v= {(v

1α
,v
2α)
 | 0≤α≤1}, then 

u+ v= {(u
1α
+v

1α
,u

2α
+v

2α)
 | 0≤α≤1}

λ u= {(λu
1α,λu

2α) | 0≤α≤1} for λ≥0.

Now, we define the metric $d_\infty $ on $F(R)$ by

d∞( u, v)= sup 0≤α≤1h(L α u,L α v ),

where h  is Hausdorff metric defined as

h(L α u,L α v )= max(|u
1
α-v

1
α |,|u

2
α-v

2
α |).

The norm of u∈F(R)  is defined by

|| u ||= d∞( u, 0)= max(|u
1
0 |, |u

2
0 |).

Then it is well-known that F(R)  is complete but nonseparable with respect to 

the metric d ∞. Joo and Kim (2000) introduced a metric ds  in F(R)  which 

makes it a separable metric space as follows.

Definition 2.1. Let T  denote the class of strictly increasing, continuous 

mapping of [0, 1] onto itselt. For u, v∈F(R), we define

ds( u, v)= inf{ε : there exists a t inT such that

sup 0≤α≤1 | t(α)-α|≤ε and d∞( u,t∘ v)≤ε},

where t∘ v  denotes the composition of v  and t.
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3. Main results

Throughout this section, we assume that the space F(R)  is considered as the 

metric space endowed with the metric ds, unless otherwise stated. Also, we 

denote by Ɓ s  the Borel σ  -field of F(R)  generated by the metric ds.

Let (Ω,Ą,P)  be a probability space. A fuzzy number valued function 

X :Ω→F(R)  is called a fuzzy random variable if it is measurable, i.e.,

X
- 1
(B)= {ω : X( ω) ∈B } ∈Ą for every B∈Ɓ s.

If we denote X ( ω)= {(X
1
α (ω),X

2
α(ω)) | 0≤α≤1}, then it is known that X  is 

a fuzzy random variable if and only if for each α∈[0,1], X
1
α
 and X

2
α
 are 

random variables in the usual sense. A fuzzy random variable 

X= {(X
1
α,X

2
α) | 0≤α≤1}  is called integrable if for each α ∈[0,1], X

1
α
 and X

2
α
 

are integrable, equivalently, ⌠
⌡|| X ||dP < ∞

. In this case, the expectation of X  is 

the fuzzy number E X  defined by

E X= {(EX1α,EX
2
α) | 0≤α≤1}

Theorem 3.1. Let { Xn }= {(X
1
nα,X

2
nα) | 0≤α≤1}  be a sequence of fuzzy 

random variables and u= {(u1α,u
2
α) | 0≤α≤1}  be a fuzzy number with 

|| u || < ∞. Suppose that

(1) X1nα→u
1
α
 a.s and X2nα→u

2
α
 a.s for any α ∈[0,1]

(2) X1nα+→u
1
α
+  a.s and X2nα-→u

2
α
-  a.s for every discontinuity point of uα1  

and uα2, respectively.

Then we have

lim
n→∞

d∞( Xn, u )=0  a.s.

We need the following lemma given in Joo et al. (2001). 

Lemma 3.1. Let u={(u1α,u
2
α) | 0≤α≤1}  with ||u || < ∞  and ε > 0  be given.

(1) Then there exists a partition 0=α0 < α1 < … < α r=1  of [0,1]  such that 
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u1α i-u
1
α
+
i-1
≤ε  for all  i=1,2,…,r.

(2) Similar statements hold for u2α.

Proof of Theorem 3.1. Let ε > 0  be arbitrary fixed. By Lemma 3.1, there exists a

partition 0=α0 < α1 < … < α r=1  of [0,1]  such that u
1
α i
-u1α+i-1≤ε

 for all 

i=1,2,…,r. Let Ak= {X
1
n α k
→u1α k  and X

1
n α+→u

1
α+
 for all discontinuity points 

of u
1
α}  and A ε= ∩

r

k=1
Ak, then by the assumption P(Ak)=1, k=1,2,…,r,  and 

hence P(A ε)=1. Then for any given w∈A ε, there exists N(w)  such that for 

n≥N(w),

sup k= 1,2,…,r{|X
1
n α k
(w)-u1α k |, |X

1
n α+k
(w)-u1α+k | }≤ε.

Now, let α ∈(α k-1,α k],  then for n≥N(w),

X1n α(w)-u
1
α ≤ X

1
n α k(w)-u

1
α
+
k-1

≤ u1α k+ε-u
1
α
+
k-1
≤2ε

and

u1α-X
1
n α(w) ≤ u1α k-X

1
n α

+
k-1
(w)

≤ u1α k-( u
1
α
+
k-1
- ε)≤2ε.

Hence

sup α∈ (α k-1,α k]|X
1
n α(w)-u

1
α |≤2ε.

Since k  is arbitrary, we have

sup α∈ [0,1]|X
1
n α(w)-u

1
α |≤2ε.

Let A= ∩
∞

n=1
A 1

n

, then P(A)=1  and for any w∈A
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lim
n→∞

sup 0≤α≤1|X
1
n α(w)-u

1
α |=0.

Similarly, it can be proved that

lim
n→∞

sup 0≤α≤1|X
2
n α-u

2
α |=0, a.s.

which completes the proof.

Recently, Kim (2000) proved a SLLN for sums of levelwise independent and 

identically distributed fuzzy random variables. But his result is a special case of 

Theorem 1. If Xn  is a sequence of levelwise independent and levelwise 

identically distributed random variables with E || X 1 || < ∞, then, it is easy to 

check that both {X1nα+}  and {X
2
nα-}  for α ∈[0,1]  are independent and 

identically distributed random variables, respectively, with E | X
1
nα+ | < ∞  and 

E | X
2
nα- | < ∞. And it is also easy to check that for any α ∈[0,1]

1
n ∑

n

i=1
X
1
iα+→EX

1
α+
 a.s.

and

1
n ∑

n

i=1
X2iα-→EX

2
α-
 a.s.

by Kolmogorov's strong law of large numbers and monotone convergence 

Theorem. It is also noted that the set of discontinuity point of EX1α  and EX
2
α
 is 

at most countable. Now, using Theorem 1 we have the following generalized 

result of Kim (2000) as a corollary.

Corollary 3.1. Let { Xn }  be a sequence of levelwise independent and 

levelwise identically distributed fuzzy random variables, with E || X 1 || < ∞. Then 

we have 

d∞(
1
n ∑

n

i=1
Xi,E X 1 )→ 0  a.s.
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Remark. The condition that EX11α  and EX
2
1α
 are continuous as functions of α  

in Kim's result is not needed.

Recently Joo et al. (2001) proved a SLLN for sums of stationary and ergodic 

fuzzy random variables. With similar arguments as above, noting that for each 

α ∈[0,1], {X
1
nα}, {X

1
nα+}, {X

2
nα}  and {X

2
nα-}  are sequences of stationary and 

ergodic random variables under the assumption that { Xn }  is a sequence of 

stationary and ergodic fuzzy random variables, we also have Joo's result as a 

corollary by Theorem 1.

Corollary 3.2. Let Xn  be a sequence of stationary fuzzy random variables. If 

{ Xn }  is ergodic and E || X 1 || < ∞, then

d∞(
1
n ∑

n

i=1
Xi,E X 1 )→ 0  a.s.
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