DOI QR코드

DOI QR Code

Effect of Support on Synthesis Gas Production of Supported Ni Catalysts

니켈 담지촉매를 이용한 합성가스 제조 시 담체의 영향

  • Kim, Sang-Bum (Department of Chemical Engineering, Myongji University) ;
  • Park, Eun-Seok (Department of Chemical Engineering, Myongji University) ;
  • Cheon, Han-Jin (Department of Chemical Engineering, Myongji University) ;
  • Kim, Young-Kook (Department of Chemical Engineering, Myongji University) ;
  • Lim, Yun-Soo (Department of Ceramic Engineering, Myongji University) ;
  • Park, Hong-Soo (Department of Chemical Engineering, Myongji University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, Myongji University)
  • 김상범 (명지대학교 공과대학 화학공학과) ;
  • 박은석 (명지대학교 공과대학 화학공학과) ;
  • 천한진 (명지대학교 공과대학 화학공학과) ;
  • 김영국 (명지대학교 공과대학 화학공학과) ;
  • 임연수 (명지대학교 공과대학 세라믹공학과) ;
  • 박홍수 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과)
  • Published : 2003.12.31

Abstract

Synthesis gas is produced commercially by a steam reforming process. However, the process is highly endothermic and energy intensive. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to cut down the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

Keywords

References

  1. R. J. Lewis, 'Hawley's condensed chemical dictionary', 12th ed., p. 810, Van Nostrand Reinhold, New York (1993)
  2. G. A. Foulds and J. A. Lapszewicz, 'Catalysis', 11, Royal Society of Chemistry, Cambridge, 413 (1994) https://doi.org/10.1039/9781847553232-00412
  3. I. Wender, 'Reactions of synthesis gas', Fuel Process. Tech., 48, 189 (1996) https://doi.org/10.1016/S0378-3820(96)01048-X
  4. M. A. Pena, J. P. Gomez, and J. L. G. Fierro, Appl. Catal. A: Gen., 144, 7 (1996) https://doi.org/10.1016/0926-860X(96)00108-1
  5. R. Craciun, B. Shereck, and R, J, Gorte, Catal. Lett., 51, 149 (1998) https://doi.org/10.1023/A:1019022009310
  6. J. D. Grunwaldt, L. Basini, and B. S. Clausem, J. Catal., 200, 321 (2001) https://doi.org/10.1006/jcat.2001.3211
  7. C. Elmasides and X. E. Verykios, J. Catal., 203, 477 (2001) https://doi.org/10.1006/jcat.2001.3342
  8. Y. Ji, W. Li, H. Xu, and Y. Chen, Catal. Lett., 71, 45 (2001) https://doi.org/10.1023/A:1016648106910
  9. Z. W. Liu, H. S. Roh, K. W. Jun, S. E. Park, and T. Y. Song, Korean J. Chem. Eng., 19, 742 (2002) https://doi.org/10.1007/BF02706962
  10. K. L. Hohn and L. D. Schmidt, Appl. Catal. A: Gen., 211, 53 (2001) https://doi.org/10.1016/S0926-860X(00)00835-8
  11. Y. Zhang, G. Xiong, S. Sheng and W. Yang, Catalysis Today, 63, 517 (2000) https://doi.org/10.1016/S0920-5861(00)00498-3
  12. S. Tang, J. Lin and K. L. Tan, Catal. Lett., 51, 169 (1998) https://doi.org/10.1023/A:1019034412036
  13. E. Ruckenstein and Y. H. Hu, Appl. Catal. A: Gen., 183, 85 (1999) https://doi.org/10.1016/S0926-860X(99)00047-2
  14. J. C. Slaa, R. J. Berger and G. B. Marin, Catal. Lett., 43, 63 (1997) https://doi.org/10.1023/A:1018957631890
  15. A. M. D. Groote and G. F. Froment, Catalysis Today, 37, 309 (1997) https://doi.org/10.1016/S0920-5861(97)00013-8