양극화 타이타늄 표면처리가 골모세포 증식에 미치는 영향

The effect of implant surface treated by anodizing on proliferation of the rat osteoblast

  • 허인식 (경희대학교 치과대학 치주과학교실) ;
  • 박준봉 (경희대학교 치과대학 치주과학교실) ;
  • 권영혁 (경희대학교 치과대학 치주과학교실) ;
  • 허익 (경희대학교 치과대학 치주과학교실) ;
  • 김형선 (한국과학기술연구원 나노 환경연구센터) ;
  • 조병원 (한국과학기술연구원 나노 환경연구센터) ;
  • 조원일 (한국과학기술연구원 나노 환경연구센터)
  • Hur, Yin-Shik (Department of Periodontology, College of Dentistry, Kyung Hee University) ;
  • Park, Joon-Bong (Department of Periodontology, College of Dentistry, Kyung Hee University) ;
  • Kwon, Young-Hyuk (Department of Periodontology, College of Dentistry, Kyung Hee University) ;
  • Herr, Yeek (Department of Periodontology, College of Dentistry, Kyung Hee University) ;
  • Kim, Hyung-Sun (Eco-Namo Research Center, KIST(Korea Institute of Science and Technology)) ;
  • Cho, Byung-Won (Eco-Namo Research Center, KIST(Korea Institute of Science and Technology)) ;
  • Cho, Won-Il (Eco-Namo Research Center, KIST(Korea Institute of Science and Technology))
  • 발행 : 2003.09.30

초록

The surface characteristics of titanium have been shown to have an important role in contact ossseointegration around the implant. Anodizing at high voltage produces microporous structure and increases thickness of surface titanium dioxide layer. The aim of present study was to analyse the response of rat calvarial osteoblast cell to commercially pure titanium and Ti-6A1-4V anodized in 0.06 mol/l ${\beta}$-glycerophosphate and 0.03 mol/l sodium acetate. In this study, rat calvarial osteoblasts were used to assay for cell viability and cell proliferation on the implant surface at 1,2,4,7 days. 1. Surface roughness was 1.256${\mu}m$ at 200V, and 1.745${\mu}m$ at 300V. 2. The thickness of titanium oxide layer was increased 1 ${\mu}m$ with the increase of 50V. 3. The proliferation rate of osteoblastic cells was increased with the increase of the surface roughness and the thickness of titanium oxide layer. 4. There was no difference in cell viability and cell proliferation between commercially pure titanium and Ti-6A1-4V anodized at the same condition. In conclusion, the titanium surface modified by anodizing was biocompatible, produced enhanced osteoblastic response. The reasons of enhanced osteoblast response might be due to reduced metal ion release by thickened and stabilized titanium dioxide layer and microporous rough structures.

키워드

참고문헌

  1. Bowers, K.T., Keller, J.C., Randolph, B.A., Wick, D.G., Michaels, C.M. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992: 7(3): 302-310
  2. Kieswetter, K, Schwartz, Z, Dean, D.D., Boyan, B.D. : The role of implant surface characteristics in the healing of bone. Crit, Rev. Oral Biol, Med, 1996: 7(4): 329-345 https://doi.org/10.1177/10454411960070040301
  3. Lohmann, C.H., Sagun, R. Jr., Sylvia, V.L., Cochran, D.L., Dean, D.D., Boyan, B.D., Schwartz, Z. Surface roughness modulates the response of MG63 osteoblast-like cells to 1,25(OH)(2)D(3) through regulation of phospholi-pase A(2) activity and activation of protein kinase A. J. Biomed. Mater. Res., 1999: 47(2): 139-151 https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<139::AID-JBM4>3.0.CO;2-2
  4. ter Brugge, P.J. and Jansen, J.A. Initial interaction of rat bone marrow cells with non-coated and calcium phosphate coated titanium substrates. Biomaterials 2002: 23: 3269-3277 https://doi.org/10.1016/S0142-9612(02)00085-6
  5. Orsini, G., Assenza, B., Scarano, A., Piattelli, M., Piattelli, A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int. J. Oral Maxillofac. Implants 2000: 15: 779-784
  6. Lijian, Z., Ti-Sheng, C., Wei, W., Lei, C. Study of commercially pure titanium implants bone integration mechanism. Eur, J. Plast, Surg., 2000: 23: 301-304 https://doi.org/10.1007/s002380000165
  7. Buser, D., Schenk, R.K., Steinemann, S., Fiorellini, J.P., Fox, C.H., Stich, H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed, Mater. Res. 1991: 25(7): 889-902 https://doi.org/10.1002/jbm.820250708
  8. Ericsson, I., Johansson, C.B., Bystedt, H., Norton, M.R. A histomorphometric evaluation of bone-to-implant contact on machine- prepared and roughened titanium dental implants. A pilot study in the dog. Clin, Oral Implants Res. 1994: 5(4): 202-206 https://doi.org/10.1034/j.1600-0501.1994.050402.x
  9. Larsson, C., Thomsen, P., Lausmaa, J., Rodahl, M., Kasemo, B., Ericson, L.E. Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology. Biomaterials 1994: 15(13):1062-1074 https://doi.org/10.1016/0142-9612(94)90092-2
  10. Larsson, C., Thomsen, P., Aronsson, B.O., Rodahl, M., Lausmaa, J., Kasemo, B., Ericson, L.E. Bone response to surface- modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 1996: 17(6): 605-616 https://doi.org/10.1016/0142-9612(96)88711-4
  11. Wennerberg, A., Ektessabi, A., Albrektsson, T., Johansson, C., Andersson, B. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int. J. Oral Maxillofac. Implants 1997: 12(4): 486-494
  12. Wennerberg, A., Hallgren, C., Johansson, C., Danelli, S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin, Oral Implants Res. 1998: 9(1): 11-19 https://doi.org/10.1034/j.1600-0501.1998.090102.x
  13. Trisi, P., Rao, W., Rebaudi, A. A histometric comparison of smooth and rough titanium implants in human low-density jawbone. Int. J. Oral Maxillofac. Implants 1999: 14(5): 689-698
  14. Gotfredsen, K., Wennerberg, A., Johansson, C., Skovgaard, L. T., Hjorting-Hansen E. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J. Biomed, Mater. Res. 1995: 29(10): 1223-1231 https://doi.org/10.1002/jbm.820291009
  15. Wennerberg, A., Albrektsson, T., Andersson, B., Krol, J.J. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin, Oral Implants Res. 1995:6(1): 24-30 https://doi.org/10.1034/j.1600-0501.1995.060103.x
  16. Wennerberg, A., Albrektsson, T., Lausmaa, J. Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-microns-sized particles of Al203. J. Biomed, Mater. Res. 1996: 30(2): 251-260 https://doi.org/10.1002/(SICI)1097-4636(199602)30:2<251::AID-JBM16>3.0.CO;2-P
  17. Buser, D., Nydegger, T., Hirt, H.P., Cochran, D.L., Nolte, L.P. Removal torque values of titanium implants in the maxilla of miniature pigs. Int. J. Oral Maxillofac. Implants 1998: 13(5):611-619
  18. Kent, J.N., Block, M.S., Finger, I.M., Guerra, L., Larsen, H., Misiek, D.J. Biointegrated hydroxya-patite-coated dental implants: 5 year clinical observations. Journal of the American Dental Association 1990: 121: 138-144 https://doi.org/10.14219/jada.archive.1990.0138
  19. Hahn, J.A. A preliminary clinical evaluation of the Steri-Oss implant system. Int. J. Oral Implants 1990:75: 31-36
  20. Saadoun, A.P. and LeGall, M.L. Clinical results and guidelines on Steri-Oss endosseous implants. Int. J. Periodontics & Restorative Dent. 1992: 12: 487-499
  21. Babbush, Ch.A. and Shimura, M. Five- year statistical and clinical observations with the IMZ two-stage osseointegrated implant system. Int. J. Oral Maxillofac. Implants 1993:8: 245-253
  22. Block, M.S. and Kent. J.N. Long-term follow-up on hydroxyapatite-coated cylindrical dental implants: a comparison between development and recent periods. Int. J. Oral Maxillofac. Surg, 1994: 52: 937-943 https://doi.org/10.1016/S0278-2391(10)80074-6
  23. Wheeler, S.L. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite coated cylinder implants. Int. J. Oral Maxillofac. Implants 1996: 3: 340-350
  24. Watson, C.J., Ogden, A.R., Tinsley,, D., Russel J.L., Davidson, E.M. A 3-to 6-year study of overdentures supported by hydroxyapatitec-coated endosseous dental implants. Int. J. Prosthodont. 1998: 11: 610-619
  25. Mouzin, O., Soballe, K, Bechtold, J.E. Loading improves anchorage of hydroxyapatite implants more than titanium implants. J. Biomed, Mater. Res., 2001: 58: 61-68 https://doi.org/10.1002/1097-4636(2001)58:1<61::AID-JBM90>3.0.CO;2-S
  26. Buser, D., Mericske-Stern, R., Bernard, J.P., Behneke, A., Behneke, N., Hirt, H.P., Belser, U.C., Lang, N.P. Long-term evaluation of non-submerged ITI implants. Part I: An 8-year life table analysis of a prospective multi center study with 2359 implants. Clin, Oral. Implants, Res. 1997: 8: 161-172 https://doi.org/10.1034/j.1600-0501.1997.080302.x
  27. Buser, D., Mericske-Stern, R, Dula, K., Lang, N.P. Clinical experience with one-stage, non-submerged dental implants. Advances in Dental Research 1999:13: 153-161 https://doi.org/10.1177/08959374990130010501
  28. Weber, H.P., Crohin, C.C., Fiorellini, J.P. A 5-year prospective clinical and radiographic study of non-submerged dental implants. Clin, Oral. Implants. Res. 2000: 11(2) 144-153 https://doi.org/10.1034/j.1600-0501.2000.110207.x
  29. Deporter, D., Pilliar, R.M., Todescan, R., Watson, P., Pharoah, M. Managing the posterior mandible of partially edentulous patients with short, porous-surfaced dental implants: early data from a clinical trial. Int. J. Oral Maxillofac. Implants 2001: 16(5): 653-658
  30. Deporter, D.A., Todescan, R, Watson, P.A., Pharoah, M., Pilliar, R.M., Tomlinson, G. A prospective human clinical trial of Endopore dental implants in restoring the partially edentulous maxilla using fixed prostheses. Int. J. Oral Maxillofac. Implants 2001: 16(4): 527-536
  31. Deporter, D., Todescan, R., Caudry, S. Simplifying management of the posterior maxilla using short, porous-surfaced dental implants and simultaneous indirect sinus elevation. Int. J. Periodontics Restorative Dent. 2000: 20(5): 476-485
  32. Gotfredsen, K., Wennerberg, A., Johansson, C., Skovgaard, L.T., Hjorting-Hansen E. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J. Biomed, Mater. Res., 1995: 29(10): 1223-1231 https://doi.org/10.1002/jbm.820291009
  33. Mustafa, K., Wroblewski, J., Hultenby, K., Silva Lopez, B., Arvidson, K. Effects of titanium surfaces blasted with TiO2 particles on the initial attachment of cells derived from human mandibular bone. Clin, Oral Implants Res. 2000: 11: 116-128 https://doi.org/10.1034/j.1600-0501.2000.110204.x
  34. Mano, T., Ueyama, Y., Ishikawa, K., Matsumura, T., Suzuki, K. Initial tissue response to a titanium implant coated with apatite at room temperature using a blast coating method. Biomaterials 2002: 23: 1931-1936 https://doi.org/10.1016/S0142-9612(01)00319-2
  35. Sanz, A., Oyarzun, A., Farias, D., Diaz, I. Experimental study of bone response to a new surface treatment of endosseous titanium implants. Implant. Dent. 2001;10(2):126-131 https://doi.org/10.1097/00008505-200104000-00009
  36. Klokkevold, P.R. Johnson, P., Dadgostari, S., Caputo, A., Davies, J.E., Nishimura, R.D. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit. Clin, Oral Impl. Res. 2001: 12: 350-357 https://doi.org/10.1034/j.1600-0501.2001.012004350.x
  37. Cordioli, G., Majzoub, Z., Piattelli, A., Scarano, A. Removal torque and histomorphometric investigation of 4 different titanium surfaces : An experimental study in the rabbit tibia. Int. J, Oral Maxillofac. Implants. 2000: 15: 668-674
  38. Lazzara, R.J., Testori, T., Trisi, P., Porter, S.S., Weinstein, R.L. A human histologic analysis of Osseotite and machined surfaces using implants with 2 opposing surfaces. Int. J, Periodontics Restorative Dent. 1999: 19: 117-129
  39. Wilke, H.J., Claes, L., Steinemann, S. The influence of various titanium surfaces on the interface shear strength between implants and bone. Advances of Biomaterials 1990: 9: 309-311
  40. Buser, D., Nydegger, T., Oxland, T., Cochran, D.L., Schenk, R.K., Hirt, H.P., Snetivy, D., Nolte, L.P. Influence of surface characteristics on the interface shear strength between titanium implants and bone. A biomechanical study in the maxilla of miniature pigs. J. Biomed, Mater. Res. 1999:45 :75-83 https://doi.org/10.1002/(SICI)1097-4636(199905)45:2<75::AID-JBM1>3.0.CO;2-P
  41. Kim, H.S., Cho, W.I., Cho, B.W., Park, J.B., Hur, Y.S. Characterization of titanium implant anodized in various electrolytes. J. Korean Electrochem. Soc. 2002: 5(2): 43-46 https://doi.org/10.5229/JKES.2002.5.2.043
  42. Byeon, K.J., Kim, C.S., Zhu, X., Kim, K.H. Electrochemical behavior and morphology of anodic titanium oxide films. J. Biomed. Eng. Res. 2000: 21(3): 273-277
  43. Sul, Y.T., Johansson, C.B., Jeong, Y.S., Albrektsson, T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Medical Engineering & Physics, 2001: 23: 329-346 https://doi.org/10.1016/S1350-4533(01)00050-9
  44. Sul, Y.T., Johansson, C.B., Kang, Y., Jeon, D.G., Albrektsson, T. Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric a9cid incorporation. Clin, Implant Dent. Relat, Res. 2002: 4(2): 78-87 https://doi.org/10.1111/j.1708-8208.2002.tb00156.x
  45. Sul, Y.T., Johansson, C.B., Jeong, Y., Wennerberg, A., Albrektsson, T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin, Oral Implants Res. 2002: 13(3): 252-259 https://doi.org/10.1034/j.1600-0501.2002.130304.x
  46. Sul, Y.T., Johansson, C.B., Petronis, S., Krozer, A., Jeong, Y., Wennerberg, A., Albrektsson, T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configureurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002: 23(2):491-501 https://doi.org/10.1016/S0142-9612(01)00131-4
  47. Sul, Y.T., Johansson, C.B., Petronis, S., Roser, K., Albrektsson, T. Qualitative and quantitative observations of bone tissue reactions to anodized implants Biomaterials 2002: 23: 1809-1817 https://doi.org/10.1016/S0142-9612(01)00307-6
  48. Larsson, C., Thomsen, P., Lausmaa, J., Rodahl, M., Kasemo, B., Ericson, L.E. Bone response to surface modified titanium implants : studies on electropolished implants with different oxide thickness and morphology. Biomaterials 1994: 15(13): 1062-1074 https://doi.org/10.1016/0142-9612(94)90092-2
  49. Larsson, C., Thomsen, P., Aronsson, B.O., Rodahl, M., Lausmaa, J., Kasemo, B., Ericson, L.E. Bone response to surface- modified titanium implants : studies on the early tissue response to machined and electropolished implants with different oxide thickness. Biomaterials 1996: 17(6):605-616 https://doi.org/10.1016/0142-9612(96)88711-4
  50. Hall J. and Lausmaa J. Properties of a new porous oxide surface on titanium implants. Applied Osseointegration Research. 2000: 1(1): 5-8
  51. Larsson C. The interface between bone and implants with different surface oxide properties. Applied Osseointegration Research. 2000: 1(1): 5-14
  52. Henry, P.J., Tan, A.E.S., Allan, B.P., Hall, J., Johansson, C. Removal torque comparison of TiUnite and turned implants in the greyhound dog mandible. Applied Osseointegration Research. 2000: (1): 15-17
  53. Rompen, E., DaSilva, D., Lundgren, A.K., Gottlow, J., Sennerby, L. Stability measurement of a double-threaded titanium implant design with turned or oxide surface. An experimental mandible, Applied Osseointegration Research, 2000: 1(1): 18-20
  54. Albrektsson, T., Johansson, C., Lundgren, A.K., Sul, Y.T., Gottlow, J. Experimental studies on oxidized implants. A histomorphometrical and biomechanical analysis. Applied Osseointegration Research. 2000: 1(1): 21-24
  55. Gottlow, J., Johansson, C., Albrektsson, T., Lundgren, A. K. Biomechanical and histologic evaluation of the TiUnite and Osseotite implant surfaces in rabbits after 6 weeks of healing, Applied Osseointegration Research, 2000: 1(1): 25-27
  56. Gottlow, J., Henry, P.J., Tan, A.E.S., Allan, B. P., Johansson, C., Hall, J. Biomechanical and histologic evaluation of the TiUnite and Osseotite implant surfaces in dogs, Applied Osseointegration Research. 2000: 1(1): 28-30
  57. Sennerby, L. and Miyamoto, I. Insertion torque and RFA analysis of TiUnite and SLA implants. A study in the rabbit. Applied Osseointegration Research, 2000: 1(1): 31-33
  58. Kennedy, A.C., Kohler, R. and Poole, P, A sodium hydroxide anodize surface pretreatment for the adhesive bonding of titanium alloys, Int. J. Adhesion and Adhesives, 1983: 3(2) : 133-139 https://doi.org/10.1016/0143-7496(83)90118-5
  59. Jennifer, A., Filbey, and Wightman J.P. Factors affecting the durability of Ti-6AI- 4V/ epoxy bonds. J, Adhesion, 1989: 28: 1-22 https://doi.org/10.1080/00218468908030166
  60. Azumi, K, Yasui, N. and Seo, M. : Changes in the properties of anodic oxide films formed. on titanium during long- term immersion in deaer-ated neutral solutions. Corrosion Science, 2000: 42: 885-896 https://doi.org/10.1016/S0010-938X(99)00096-7
  61. Zhu, X., Kim, K.H., Jeong, Y, Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials 2001: 22(16): 2199-2206 https://doi.org/10.1016/S0142-9612(00)00394-X
  62. Zhu, X., Ong, J. L., Kim, S. Y., Kim, K. H. Surface characteristics and structure of anodic oxide films Ca and P on a titanium implant material. J. Biomed. Mater. Res. 2002: 60: 333-338 https://doi.org/10.1002/jbm.10105
  63. Woodman, J.L., Jacobs, J.J., Galante, J.O., Urban, R. M. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons : A long-term study. J. Orthop. Res, 1984: 1: 421-430 https://doi.org/10.1002/jor.1100010411
  64. Wisbey, A., Gregson, P.J., Peter, L,M., Tuke, M. Effect of surface treatment on the dissolution of titanium-based implant materials, Biomaterials 1991: 12(5): 470-473 https://doi.org/10.1016/0142-9612(91)90144-Y
  65. Healy, KE, and Ducheyne, P. The mechanisms of passive dissolution of titanium in a model physiological environment, J. Biomed, Mater. Res., 1992: 26: 319-338 https://doi.org/10.1002/jbm.820260305
  66. Bessho, K., Fujimura, K. and Iizuka, T. Experimental long-term study of titanium ions eluted from pure titanium miniplates, J. Biomed, Mater, Res. 1995: 29: 901-904 https://doi.org/10.1002/jbm.820290716
  67. Chen, G., Wen, X., Zhang, N. Corrosion resistance and ion dissolution of titanium with different surface microroughness, Biomed, Mater. Eng, 1998:8(2): 61-74 https://doi.org/10.1017/S0266078400006428
  68. Hanawa, T., Asami , K, and Asaoka, K. : Repassivation of titanium and surface oxide film regenerated in simulated bioliquid, J. Biomed, Mater, Res., 1998, 40, 530-538 https://doi.org/10.1002/(SICI)1097-4636(19980615)40:4<530::AID-JBM3>3.0.CO;2-G
  69. Browne, M. and Gregson, P.J. Effect of mechanical surface pretreatment on metal ion release, Biomaterials 2000: 21(4): 385-392 https://doi.org/10.1016/S0142-9612(99)00200-8
  70. Anselme, K., Linez, P., Bigerelle, M., Le Maguer, D., Le Maguer, A., Hardouin, P., Hildebrand, H. F., Iost, A., Leroy, J.M. The relative influence of the topography and chemistry of TiA16V4 surfaces on osteoblastic cell behaviour. Biomaterials 2000: 21: 1567-1577 https://doi.org/10.1016/S0142-9612(00)00042-9
  71. Ku, C.H., Pioletti, D.P., Browne, M., Gregson, P.J. Effect of different Ti-6Al- 4V surface treatments on osteoblasts behaviour. Biomaterials. 2002: 23(6): 1447-54 https://doi.org/10.1016/S0142-9612(01)00266-6
  72. Pioletti, D.P., Takei, H., Lin, T., Van Landuyt, P., Ma, Q.J., Kwon, S.Y., Sung, K.L. The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials 2000: 21(11): 1103-1114 https://doi.org/10.1016/S0142-9612(99)00250-1
  73. Pioletti, D.P., Takei, H., Kwon, S.Y., Wood, D., Sung, K.L. The cytotoxic effect of titanium particles phagocytosed by osteoblasts. J. Biomed. Mater. Res. 1999:46(3): 399-407 https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<399::AID-JBM13>3.0.CO;2-B
  74. Kwon, S.Y., Takei, H., Pioletti, D.P., Lin, T., Ma, Q.J., Akeson, W.H., Wood, D.J., Sung, K.L. Titanium particles inhibit osteoblast adhesion to fibronectin-coated substrates. J. Orthop. Res. 2000: 18(2): 203-211 https://doi.org/10.1002/jor.1100180207
  75. Thompson, G.J., Puleo, D.A. Ti-6Al-4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation time-course in vitro. Biomaterials 1996: 17: 1949-1954 https://doi.org/10.1016/0142-9612(96)00009-9
  76. Ku, C.-H., Browne, M., Gregson, P.J., Corbeil, J., Pioletti, D. P. Large-scale gene expression analysis of osteoblasts cultured on three different Ti-6Al-4V surface treatments. Biomaterials 2002: 23:4193-4202 https://doi.org/10.1016/S0142-9612(02)00161-8
  77. Pioletti, D.P., Leoni, L., Genini, D., Takei, H., Du, P., Corbeil, J. Gene expression analysis of osteoblastic cells contacted by orthopedic implant particles. J. Biomed. Mater. Res. 2002: 61(3): 408-420 https://doi.org/10.1002/jbm.10218
  78. Takei, H., Pioletti, D.P., Kwon, S.Y., Sung, K.L. Combined effect of titanium particles and TNF-alpha on the production of IL-6 by osteoblast-like cells. J. Biomed. Mater. Res. 2000: 52(2):382-7 https://doi.org/10.1002/1097-4636(200011)52:2<382::AID-JBM19>3.0.CO;2-V
  79. Glant, T.T., Jacobs, J.J., Molnar, G., Shanbhag, A. S., Valyon, M., Galante, J.O. Bone resorption activity of particulate- stimulated macrophages. J. Bone Miner. Res. 1993:8(9): 1071-1079 https://doi.org/10.1002/jbmr.5650080907
  80. Glant, T.T. and Jacobs, J.J. Response of three murine macrophage populations to particulate debris: bone resorption in organ cultures. J. Orthop, Res. 1994: 12(5):720-731 https://doi.org/10.1002/jor.1100120515
  81. Shanbhag, A. S., Jacobs, J.J., Black, J., Galante, J. O., Giant, T.T. Macrophage/ particle interactions: effect of size, composition and surface area. J. Biomed. Mater. Res. 1994: 28(1): 81-90 https://doi.org/10.1002/jbm.820280111
  82. Lee, S.H., Brennan, F.R., Jacobs, J.J., Urban, R.M., Ragasa, D.R., Glant, T.T. Human mono-cyte/ macrophage response to cobalt-chromium corrosion products and titanium particles in patients with total joint replacements. J. Orthop, Res. 1997: 15(1):40-49 https://doi.org/10.1002/jor.1100150107
  83. Lee, T,M., Chang, E. and Yang, C.Y. A comparison of the surface characteristics and ion release of Ti-6Al-4V and heat-treated Ti-6Al-4V. J. Biomed. Mater. Res., 2000: 50: 499-511 https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4<499::AID-JBM5>3.0.CO;2-U
  84. Lausmaa, J., Kasemo, B., Mattsson, H., Odelius, H. Multitechnique surface characterization of oxide films on electropolished and anodically oxidized titanium. Appl, Surface Sci. 1990: 45: 189-200 https://doi.org/10.1016/0169-4332(90)90002-H
  85. Park, J.Y. and Davies, J.E. Red blood cell and platelet interactions with titanium implant surfaces. Clin, Oral Impl, Res. 2000: 11: 530-539 https://doi.org/10.1034/j.1600-0501.2000.011006530.x
  86. Sammons, R.L., Sharpe, J., Marquis, P.M. Use of enhanced chemiluminescence to quantify protein adsorption to calcium phosphate materials and microcarrier beads. Biomaterials 1994:15:842-847 https://doi.org/10.1016/0142-9612(94)90040-X
  87. El-Ghannam, A., Ducheyne, P., Shapiro, M. Effect of serum proteins on osteoblast adhesion to surface modified bioactive glass and hydroxyapatite. J. Orthop. Res. 1999: 17: 340-345 https://doi.org/10.1002/jor.1100170307
  88. Matsuura, T., Hosokawa, R., Okamoto, K., Kimoto, T., Akagawa, Y. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials 2000: 21: 1121-1127 https://doi.org/10.1016/S0142-9612(99)00264-1
  89. Yang, Y., Tian, J., Deng, L., Ong, J.L. Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro. Biomaterials 2002: 23: 1383-1389 https://doi.org/10.1016/S0142-9612(01)00259-9
  90. Hynes, R.O. Integrins: versatility, modulation and signaling in cell adhesion. Cell 1992: 69-1125
  91. Gronowicz, G. and McCarthy, M.B. Response of human osteoblasts to implant materials: inte-grin-mediated adhesion. J. Orthop. Res. 1996: 14: 878-887 https://doi.org/10.1002/jor.1100140606
  92. Sinha, R.K. and Tuan, R.S. Regulation of human osteoblast integrin expression by orthopedic implant materials, Bone 1996: 18: 451-457 https://doi.org/10.1016/8756-3282(96)00044-0
  93. Villareal, D,R., Sogal, A., Ong, J.L, Protein adsorption and osteoblast responses to different calcium phosphate surfaces. J. Oral. Impl, 1998: 24: 67-73 https://doi.org/10.1563/1548-1336(1998)024<0067:PAAORT>2.3.CO;2
  94. Cowles, E.A., Brailey, L.L., Gronowicz, G.A. Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts. J. Biomed, Mater. Res, 2000: 52(4): 725-737 https://doi.org/10.1002/1097-4636(20001215)52:4<725::AID-JBM18>3.0.CO;2-O
  95. El-Ghannam, A., Starr, L., Jones, J. Laminin-5 coating enhances epithelial cell attachment, spreading, and hemidesmosome assembly on Ti-6Al-4V implant material in vitro. J. Biomed, Mater. Res. 1998: 41: 30-40 https://doi.org/10.1002/(SICI)1097-4636(199807)41:1<30::AID-JBM4>3.0.CO;2-R
  96. Garcia, A.J., Vega, M.D., Boettiger, D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol. Biol. Cell 1999: 10: 785-798 https://doi.org/10.1091/mbc.10.3.785
  97. Martin, J. Y., Schwartz, Z., Hummert, T,W., Schraub, D,M., Simpson, J., Lankford, Jr, J., Dean, D,D., Cochran, D.L., Boyan, B.D. Effect of titanium surface roughness on proliferation, differentiation and protein synthesis of human osteoblast-like cells(MG63). J. Biomed, Mater. Res. 1995: 29: 389-401 https://doi.org/10.1002/jbm.820290314
  98. Mustafa, K., Wroblewski, J., Hultenby, K., Silvia Lopez, B., Arvidson, K. Effects of titanium surfaces blasted with TiO2 particles on the initial attachment of cells derived from human mandibular bone, Clin, Oral Impl. Res. 2000: 11: 116-128 https://doi.org/10.1034/j.1600-0501.2000.110204.x
  99. Boyan, B.D., Batzer, R., Kieswetter, K., Liu, Y., Cochran, D,L., Szmuckler-Moncler, S., Dean, D.D., Schwartz, Z. Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to 1 $\alpha$25-(OH)2D3. J. Biomed, Mater, Res. 1998: 29: 389-401 https://doi.org/10.1002/jbm.820290314
  100. Schwartz, Z., Martin, J.Y., Dean, D,D., Simpson, J., Cochran, D,L. Boyan, D,D. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation, J. Biomed, Mater. Res. 1996: 30: 145-155 https://doi.org/10.1002/(SICI)1097-4636(199602)30:2<145::AID-JBM3>3.0.CO;2-R
  101. Piattelli, A., Scarano, A., Piattelli, M. Detection of alkaline and acid phosphatases around titanium implants : A light microscopical and histochemical study in rabbits, Biomaterials 1995: 16: 1333-1338 https://doi.org/10.1016/0142-9612(95)91049-5
  102. Piattelli, A., Piattelli, M., Scarano, A. Simultaneous demonstration of alkaline and acid phosphatase activities in bone, at bone implant interface and at the epiphyseal growth plate in plastic embedded undemineralized tissue. Biomaterials 1997: 18: 545-549 https://doi.org/10.1016/S0142-9612(96)00172-X
  103. Lincks, J., Boyan, B.D., Blanchard, C.R., Lohmann, C.H., Liu, Y., Cochran, D.L., Dean, D.D., Schwartz, Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998: 19: 2219-2232 https://doi.org/10.1016/S0142-9612(98)00144-6
  104. Lincks J., Boyan, B,D., Cochran, D.L., Liu, Y., Blanchard, C.R., Dean, D,D., Schwartz, Z. Cell type and maturation state determine cell response to surface roughness and composition. J. Dent. Res. 77:966
  105. Mustafa, K., Wennerberg, A., Wroblewski, J., Hultenby, K., Silva Lopez, B., Arvidson, K. Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin. Oral Impl, Res. 2001: 515-525
  106. Gottlander, M., Albrektsson, T., Carlsson, L.V. A histomorphometric study of unthreaded hydroxyapatite-coated and titanium-coated implants in rabbit bone. Int. J, Oral Maxillofac. Implants. 1992:7: 485-490
  107. Bauer, T.W., Geesink, R.C., Zimmerman, R., McMahon J.T., Hydroxyapatite-coated femoral stems. Histologic analysis of components retrieved at autopsy. J. Bone. Joint. Surg, 1991: 73: 1439-1452 https://doi.org/10.2106/00004623-199173100-00001
  108. Jansen, J.A., van der Waerden, J.P.C.M., Wolke, J.G.C. Histologic investigation of the biologic behavior of different hydroxyapatite plasma-sprayed coatings in rabbit. J. Biomed, Mater. Res. 1993: 27: 603-610 https://doi.org/10.1002/jbm.820270507
  109. Dhert, W.J.A., Klein, C.P.A.T., Jansen, J.A. van der Velde, E.A., Vriesde, R.C., Rosing P.M., De Groot K. A histological and histomorphometrical investigation of fluorapatite, magne-siumwhitlockite, and hydroxyapatite plasma-sprayed coatings in goats. J. Biomed, Mater. Res. 1993: 27: 127-138 https://doi.org/10.1002/jbm.820270116
  110. Wang, B.C., Chang, E., Yang, C.Y. A histomorphometric study on osteoconduction and osseointegration of titanium alloy with and without plasma-sprayed hydroxyapatite coating using back- scattered electron images. J. Mater. Sci: Mater. Med. 1993: 4: 394-403 https://doi.org/10.1007/BF00122198
  111. Ducheyne, L.F., Radin, S., King, L. The effect of calcium phosphate ceramics composition and structure on in vitro behavior. I. Dissolution. J. Biomed, Mater. Res. 1993: 27(1) :25-34 https://doi.org/10.1002/jbm.820270105
  112. Klein, C.P.A.T., Patka, P., Wolke, J.G.C., Ce Blick-Hogervorst, J.M.A., De Groot, K. Long-term in vivo study of plasma- sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and $\alpha$-tricalcium phosphate. Biomaterials 1994: 15: 146-150 https://doi.org/10.1016/0142-9612(94)90264-X
  113. Piattelli, A., Cordioli, G.P., Trisi, P., Passi, P., Favero, G.A. Meffert, R.M. Light and confocal laser scanning microscopic evaluation of hydroxyapatite resorption patterns in medullary and cortical bone. Int. J, Oral Maxillofac. Implants. 1993:8: 309-315
  114. Cheang, P., and Khor, K.A. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 1996: 17(5): 537-544 https://doi.org/10.1016/0142-9612(96)82729-3
  115. MacDonald, D.E., Betts, F., Stranick, M., Doty, S., Boskey, A.L. Physicochemical study of plasma- sprayed hydroxyapatite- coated implants in humans. J. Biomed, Mater. Res. 2001: 54 : 480-490 https://doi.org/10.1002/1097-4636(20010315)54:4<480::AID-JBM30>3.0.CO;2-T
  116. Ishizawa, H. and Ogino, M.: Formation and charaterization of anodic titanium oxide films containing Ca and p. I, Biomed, Mater. Res., 1995: 29: 65-72 https://doi.org/10.1002/jbm.820290110
  117. Ishizawa, H. and Ogino, M. : Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J. Biomed, Mater. Res., 1995: 29: 1071-1079 https://doi.org/10.1002/jbm.820290907
  118. Ishizawa, H., Fujino, M., and Ogino, M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P, J. Biomed, Mater. Res., 1995: 29(11): 1459-1468 https://doi.org/10.1002/jbm.820291118
  119. Ishizawa, H. and Ogino, M. : Hydrothermal precipitation of Hydroxyapatite on anodic titanium oxide films containing Ca and P. J. Materials Science, 1999: 34: 5893-5898 https://doi.org/10.1023/A:1004739108534
  120. Fini, M., Cigada, A., Rondelli, G., Chiesa, R., Giardino, R., Giavaresi, G., Nicoli Aldini, N., Torricelli, P., Vicentini, B. In vitro and in vivo behaviour of Ca-and P-enriched anodized titanium. Biomaterials 1999: 20(17): 1587-1594 https://doi.org/10.1016/S0142-9612(99)00060-5
  121. Takebe, J., Itoh, S., Okada, J., Ishibashi, K. Anodic oxidation and hydrothermal treatment of titanium results in a surface causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro. J, Biomed. Mater. Res., 2000: 51(3): 398-407 https://doi.org/10.1002/1097-4636(20000905)51:3<398::AID-JBM14>3.0.CO;2-#
  122. Han, Y., Fu, T., Lu, J., Xu, K. Characterization and stability of hydroxyapatite coatings prepared by an electrodeposition and alkaline-treatment process. J, Biomed. Mater. Res., 2001: 54: 96-101 https://doi.org/10.1002/1097-4636(200101)54:1<96::AID-JBM11>3.0.CO;2-U
  123. Wennerberg, A., Albrektsson, T., Andersson, B. An animal study of c.p. titanium screws with different surface topographies. J, Mater. Sci. Mater. Med, 1995: 6: 302-309 https://doi.org/10.1007/BF00120275
  124. Wennerberg, A., Albrektsson, T., Johansson C., Andersson, B. An experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 1996: 17: 15-22 https://doi.org/10.1016/0142-9612(96)80750-2
  125. Wennerberg, A., Albrektsson, T., Andersson, B. Bone tissue response to commercially pure titanium implants blasted with tine and coarse particles of aluminum oxide. Int. J, Oral Maxillofac. Implants, 1996: 11: 38-45
  126. Schwartz Z., Lohmann C.H., Cochran D.L., Sylvia V.L., Dean D.D., Boyan B.D. Bone regulating mechanisms on implant surfaces. Proceedings of the 3rd European Workshop on Periodontology. Implant Dentistry. 1999;41-54
  127. Anselme, K., Bigerelle, M., Noel, B., Dufresne, E., Judas, D., lost, A., Hardouin, P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness. J, Biomed, Mater. Res. 2000: 49: 155-166 https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
  128. Bigerelle, M., Anselme, K., Noel, B., Ruderman, I., Hardouin, P., Iost, A. Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterial 2002: 23: 1563-1577 https://doi.org/10.1016/S0142-9612(01)00271-X
  129. Zreiqat, H., Standard, O.C., Gengenbach, T., Steele, J,G., Howllett, C.R. The role of surface characteristics in the initial adhesion of human bone derived cells on ceramics. Cells Mater. 1996: 6: 45-56
  130. Deligianni, D.D., Katsala, N.D., Koutsoukos, P.G., Missirlis, Y. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2001: 22: 87-96 https://doi.org/10.1016/S0142-9612(00)00174-5
  131. Deligianni, D.D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J., Missirlis, Y.F. Effect of surface of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials 2001: 22: 1241-1251 https://doi.org/10.1016/S0142-9612(00)00274-X
  132. Browne, M. and Gregson, PJ. Surface modification of titanium alloy implants. Biomaterials 1994: 15(1): 894-898 https://doi.org/10.1016/0142-9612(94)90113-9