법랑기질 단백질 유도체가 치주인대양세포 및 조골양세포에 미치는 영향

Effects of enamel matrix protein derivatives on the periodontal ligament like fibroblast and osteoblast like cells

  • 김동운 (단국대학교 치과대학 치주과학교실) ;
  • 정진형 (단국대학교 치과대학 치주과학교실) ;
  • 임성빈 (단국대학교 치과대학 치주과학교실) ;
  • 고선일 (단국대학교 치과대학 생화학교실)
  • Kim, Dong-Woon (Department of Periodontology, College of Dentistry, Dankook University) ;
  • Chung, Chin-Hyung (Department of Periodontology, College of Dentistry, Dankook University) ;
  • Lim, Sung-Bin (Department of Periodontology, College of Dentistry, Dankook University) ;
  • Ko, Seon-Yle (Department of Biochemistry, College of Dentistry, Dankook University)
  • 발행 : 2003.06.30

초록

Recent study on the enamel matrix derivatives explained on the effects of new bone and new attachment formation in infrabony pocket of periodontal defects. The purpose of this study was to investigate on the biological effects of enamel matrix derivatives to attachment, proliferation and activation of periodontal ligament and osteoblast cells, After treatment of osteoblast and PDL cells with various Emdogain concentration level(0.03${\mu}g$/ml, 3${\mu}g$/ml, 300${\mu}g$/ml), activation of osteogenetic factor, calcified nodule formation and measuring alkaline phosphatase activity(ALP) were performed. 1. Both osteoblast and PDL cell showed increasing initial cell attachment with 300${\mu}g$/ml Emdogain concentration. 2. At the level of 300${\mu}g$/ml, accelerated proliferation of oseoblast and PDL cell was appeared. 3. As Emdogain's concentration increased, increased ALP activation of osteoblast was shown. In case of PDL cell, Emdogain increased ALP activation prominently at the level of 300${\mu}g$/ml. 4. No statistically significant activating change were founded at all of the concentrations of Emdogain on the activating of transcript factor Runx2 for differentiating osteoblast. 5. At the level of 300${\mu}g$/ml, calcified nodule formation was increased prominently to compare with other concentration. These results indicated that Emdogain should activate initial attachment, proliferation and activation, but not on Runx2 activation and can be used for useful tool of the treatment of periodontal tissue regeneration.

키워드

참고문헌

  1. PolsonAll: The root surface and regeneration : Presenttherapeutic limitations and future biologic potentials, J Clin Periodontal 1986; 13: 955-996
  2. Stahh SS,: Repair potential of the soft tissue root interface, J Periodontal 1977; 48: 545-552, https://doi.org/10.1902/jop.1977.48.9.545
  3. Karring J, Nymann S, Lindhe J and Sirirat M, : Healing following implantation of periodontitisaffected roots into bone tissue, J Clin Periodontal 1980; 7: 96-105 https://doi.org/10.1111/j.1600-051X.1980.tb01952.x
  4. Nyman S, KaringJ, Lindhe J and Platen S, : Healing following implantation of periodontitisaffected roots into gigival connective tissue J Clin Periodontal 1980; 7: 394-401 https://doi.org/10.1111/j.1600-051X.1980.tb02012.x
  5. Andreasen JO, : Periodontal healing after replantation and autotransplantation of permanent incisors, Int J Oral Surg 1981; 60:54-61
  6. Karring J, Nymann S, Lindhe J, Sirirat M, : Potentials for root resorption during periodontal wound healing. J Clin Periodontal 1984; 11: 41-52 https://doi.org/10.1111/j.1600-051X.1984.tb01307.x
  7. 최형호, 김정근, 엄성빈, 정진형 : PDGF가 조골세포의 활성에 미치는 영향. 대한치주과학회지 1999;29: 4: 785-802
  8. 박상일, 정진형, 엄성빈, 김정근 : 혈소판 농축혈장이 조골세포의 초기부착과 증식 및 활성에 미치는 생물학적 영향. 대한치주과학회지 2001; 31:3: 513-529
  9. Rutherford RB, Trilsmith MD, Ryan HE and Charette MF. : Synergistic effects of dexamethasone on platelet-derived growth factors mitogenesis in vitro. Arch Oral Biol 1992; 37: 139-145 https://doi.org/10.1016/0003-9969(92)90009-W
  10. Giannobile WV, Finkelman RD and Lynch SE. : Comparison of canine and non-human primate animals models for periodontal regenerative therapy: Results following a single administration of PDGF/IGF-I. J periodontol 1994; 65: 1158-1168 https://doi.org/10.1902/jop.1994.65.12.1158
  11. Lynch SE, Colvin RV and Antoriades HN. : Growth factors in wound healing : Single and synergistic effects on the partial thickness porcine skin wounds. J Cin Invest 1989; 84: 640-646 https://doi.org/10.1172/JCI114210
  12. Peter Eickholz. : Long term result of guided tissue regeneration therapy with nonresorbable and bioabsorbable barrier. J Periodontol 2001;72: 35-42 https://doi.org/10.1902/jop.2001.72.1.35
  13. Carlos Rossa Jr: Regeneration of class II furcation defects with b-FGF associated with CT. J Periodontol 2000; 71: 775-784 https://doi.org/10.1902/jop.2000.71.5.775
  14. Gunnar Henden. : Treatment of human periodontal infrabony defects with Emdogain, Case report: Clinical and radiographic examination after one year of treatment. Int J Periodontics Restorative Dent 2000; 1: 19-31
  15. Giulio Rasperini, Giano R, Maurizio S. : Enamel matrix derivative for periodontal reconstructive surgery. Int J Periodontics Restorative Dent 2000; 1: 59-67
  16. Stuart J. Froum. : A comparative study utilizing open flap debridement with and without enamel matrix derivative in the treatment of periodontal intrabony defect. J Periodontol 2001; 72: 25-34 https://doi.org/10.1902/jop.2001.72.1.25
  17. Anton Sculean, : The effect of postsurgical antibiotics on the healing of intrabony defect following treatment with enamel matrix protein. J PeriodontoI 2001; 72: 190-195 https://doi.org/10.1902/jop.2001.72.2.190
  18. 백승호, 손호현, 엄성삼 : 성견에서 Super EVA, Ketac silver, MTA와 Emdogain을 이용한 치근분지부 천공치유에 관한 연구. 대한치과보존학회지 2000; 25: 2: 159-165
  19. Anton Sculean, Giovanni C, Peter W, Nicolaos D.: Enamel matrix derivative(Emdogain) for human periodontal reconstructive surgery: clinical and histologic evaluation. Int J Periodontics Restorative Dent 2001; 2: 49-55
  20. Raymond A, Yukna.: Histologic evaluation of periodontal healing in humans following regenerative therapy with enamel matrix derivative. J Periodontol 2000; 71: 752-759 https://doi.org/10.1902/jop.2000.71.5.752
  21. Mellonig JT.: Enamel matrix derivative for periodontal reconstructive surgery: Technique, clinical and histologic case report. Int J Periodontics Restorative Dent 1999; 19: 8-19
  22. Sculean A, Donos N, Blaes A, Reich E, Brecx M. : Enamel matrix proteins(Emdogain) and guided tissue regeneration in the treatment of intrabony periodontal defects: A split-mouth clinical study. J Dent Res 1998; 77: 924-929
  23. Hammarstrom L.: Enamel matrix cementum development and regeneration. J Clin Periodontol 1997; 24: 658-668 https://doi.org/10.1111/j.1600-051X.1997.tb00247.x
  24. Sigurdsson TJ, Hardwick R, Bogle GC, Wikesjo UME. : Periodontal repair in dogs : space provision by reinforced e-PTFE membranes enhance bone and cementum regeneration in large supraalveolar defects. J Periodontol 1994; 65:350 https://doi.org/10.1902/jop.1994.65.4.350
  25. Beertsen W, Van den Bos T, Everts V.: Root development in mice lacking tissue non-specific alkaline phosphatase gene. Inhibition of acellular cementum formation, J Dent Res 1999; 78:1221-1229 https://doi.org/10.1177/00220345990780060501
  26. Desalu AB. : Correlation of localization of alkaline and acid phosphatases with morphological development of the rat kidney. Anat Rec 1966; 154:253-259 https://doi.org/10.1002/ar.1091540208
  27. Heijl L.: Peridontal regeneration with enamel matrix derivative in one human experimental defect. A case report. J Clin Periodontol 1997; 24: 693-696 https://doi.org/10.1111/j.1600-051X.1997.tb00251.x
  28. Radin S, Ducheyne p.: The effect of calcium phosphate composition and structure on in vitro behavior II. Precipitation.: J Biomed Mat Res 1993; 27: 35-44 https://doi.org/10.1002/jbm.820270106
  29. Radin S, Ducheyne P.: Kinetics of th ein vitro surface transformation of bioactive ceramics to biologically equivalent apatite. In: Ducheyne P, Christiansen D, editor. Bioceramics 6. Oxford: Butterworth-Heinemann 1993. p59-65
  30. Kokubo T. .Analysis of ceramic-tissue interface reaction. In: Ducheyne P, Christiansen D, editors. Bioceramics 6. Oxford: ButterworthHeinemann 1993. p73-78
  31. Le Geroz RG, Orly I, Gregoire M and Daculsi G. : Substrate surface dissolution and interfacial biological mineralization. In: Davies JE, editor. The bone-biomaterial interface. Toronto : Univ Toronto Press 1991; p76-78
  32. Kokubo T, Ito S, Huang T, Hayashi T, Sakka S, Kitugi S and Yamumara T. : Ca, P-rich layer formed on high-strength bioactive glass-ceramic A-W. J Biomed Mat Res 1990; 25: 331-343
  33. Kokubo T, Kushitani H, Sakka S, Kitugi S and Yamumara T.: Solutions able to reproduce in vivo surface-structure changes in bioactive glassceramic A-W. J Biomed Mat Res 1990; 24: 721-734 https://doi.org/10.1002/jbm.820240607
  34. Harnmarstrorn L, Heijl L, Genstrelius S. : Peridontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol 1997; 24: 669-677 https://doi.org/10.1111/j.1600-051X.1997.tb00248.x
  35. Heijl L, Heden G, svardstrom G, Otgren A.: Enamel matrix derivative(Emdogain) in the treatment of infrabony periodontal defects. J Clin Periodontol 1997; 24: 705-714 https://doi.org/10.1111/j.1600-051X.1997.tb00253.x
  36. Schwartz Z, Carnes DL, Pulliam R, Lohmann CH, Sylvia VL, Liu Y, Cochran DL and Boyan BD. : Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of preosteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells. J Periodontol 2000; 71: 1287-1296 https://doi.org/10.1902/jop.2000.71.8.1287
  37. Lian JB, Stein GS. : Concepts of osteoblast growth and differentiation: Basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med 1992; 3: 269-305
  38. Kuru L, Parkar MH, Griffiths GS, Newman HN, Olsen I.: Flow cytometry analysis of gingival and periodontal ligament cells. J Dent Res 1998; 77: 555-564 https://doi.org/10.1177/00220345980770040801
  39. Barnard JA, Lyons RM, Moses HL.: The cell biology of transforming growth $factor-\beta$. Biochim Biophys Acta 1990; 1032: 79-87
  40. Heino J, Ignotz RA, Hemler ME, Crouse C, Massague J.: Regulation of cell adhesion receptors by transforming growth $factor-\beta$ concomitant regulation of integrins that share a common $\beta1$ subunit. J Biol Chem 1989; 264: 380-388
  41. Ripamonti U, Reddi AH.: Tissue engineering, morphogenesis and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med 1997;8: 154-163 https://doi.org/10.1177/10454411970080020401
  42. Lyngstadass SP, Ekdahl H, Lundberg E, Andersson C, Genstrelius S.: Increased TGF-$\beta1$ production in PDL cells grown on Emdogain matrix. J Dent Res 1999; 78(Spec. Issue): 189(Abstr.671)
  43. Lyngstadaas SP, Lundberg E, Ekdahl H, Andersson C, Gestrelius S. : Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J Clin PeriodontoI 2001; 28: 181-188 https://doi.org/10.1034/j.1600-051x.2001.028002181.x
  44. Petinaki E, Nikolopoulos S, Lastanas E.: Low stimulation of peripheral lymphocytes, following in vitro application of Emdogain. J Clin Periodontol 1998; 25: 715-720 https://doi.org/10.1111/j.1600-051X.1998.tb02512.x
  45. Aufmkolk B, Huashcka PV and Schwartz ER.: Characterization of human bone cell in culture. CalcifTissue Int 1985; 37: 228-235 https://doi.org/10.1007/BF02554868
  46. Anderson HC.: Mechanism of mineral formation in bone. Lab Invest 1989;60: 320-330
  47. Beertsen W, Theo Van Bos.: Calcification of dentinal collagen by cultured rabbit periosteum: The role of alkaline phosphatase. Matrix 1989;9: 159-171. https://doi.org/10.1016/S0934-8832(89)80035-6
  48. Bellows CG, Aubin JE and Heersche JNM.: Initiation and progression of mineralization of bone nodules formed in vitro: The role of alkaline phosphatase and organic phosphate. Bone and Mineral 1991; 14: 27-40 https://doi.org/10.1016/0169-6009(91)90100-E
  49. Boyan BD, Schwartz Z, Bonewald LF, Swain LD.: Localization of 1,25-(OH)2D3 responsive alkaline phosphatase in osteoblast-like cells (ROS17/2.8, MG63, and MC3T3) and growth cartilage cells in culture. J Biol Chem 1989; 264: 11879-11886
  50. Bretaudiere JP, Spillman T.: Alkaline phosphatases. In: Bergmeyer HU, ed. Methods of Enzymatic Analysis, 4th ed, Weinheim, Germany: Verlag Chemica; 1984;p75-92
  51. Monique T, Van der Pauw, Theo Van den Bos, Vincent Everts and Wouter Beertsen. : Enamel matrix-derived protein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor $\beta1$ release of periodontal ligament and gingival fibroblasts. J Periodontol 2000; 71: 31-43 https://doi.org/10.1902/jop.2000.71.1.31
  52. Somerman MJ, Archer SY, Imm GR, Foster RA,: A comparative study of human peridontal ligament cells and gingival fibroblasts in vitro. J Dent Res 1988;67: 66-70 https://doi.org/10.1177/00220345880670011301
  53. Piche JE, Cames DL, Graves DT,: Initial characterization of cells derived from human peridontia, J Dent Res 1989;68: 761-767 https://doi.org/10.1177/00220345890680050201
  54. Groeneveld MC, Everts V, Beertsen W.: Alkaline phosphatase activity in the peridontal ligament and gingiva of the rat molar: Its relation to cementum formation. J Dent Res 1995; 74: 1374-1381 https://doi.org/10.1177/00220345950740070901
  55. Sculean A, Reich E, Chiantella GC, Brecx M. : Treatment of infrabony periodontal defects with an enamel matrix protein derivative(Emdogain): A report of 32 cases. Int J Periodontics Restorative Dent 1999; 19: 157-163
  56. Zetterstrom D, Andersson C, Eriksson L. : Clinical safety of enamel matrix derivative(Emdogain) in the treatment of periodontal defects. J Clin Periodontol 1997; 24: 697-704. https://doi.org/10.1111/j.1600-051X.1997.tb00252.x