Stress Drop Characteristics of the Tsunami Generating Earthquake

해일유발지진의 응력강하 특성

  • 오석훈 (기상연구소 해양기상지진연구실) ;
  • 윤용훈 (기상연구소 해양기상지진연구실) ;
  • 양준모 (기상연구소 해양기상지진연구실) ;
  • 김수경 (기상연구소 해양기상지진연구실) ;
  • 이덕기 (기상연구소 해양기상지진연구실)
  • Published : 2003.12.31

Abstract

A study for analysing the characteristics of the 'Tsunami Earthquake' and 'Tsunamigenic Earthquake' has been done in terms of stress drop and tectonic characteristics using previous studies on magnitude, moment, energy, and length of fault. The 'Tsunami Earthquake' seemed to occur mainly on the subduction environment with a very low stress drop of about 10 bars and a thrust dip angle comparing those of the 'Tsunamigenic Earthquake' or other earthquakes. Released energy to moment ratio of the 'Tsunami Earthquake' also seemed to be lower. Earthquakes which generated tsunami in the East Sea seemed to be 'Tsunamigenic Earthquake' with a stress drop of about 30${\sim}$50 bars, and an average energy to moment ratio. Hence, stress drop, energy to moment ratio, and thrust dip angle seem to be indicators of earthquakes that produce tsunamis.

해일지진 및 해일유발지진의 특성을 기존의 연구결과인 규모, 모멘트, 에너지 그리고 단층의 길이 등의 자료를 이용하여 응력강하량 및 지체구조 관점에서 분석을 하였다. 해일지진(Tsunami Earthquake)은 일반 지진이나 해일유발지진(Tsunamigenic Earthquake)보다는 약 10bar 정도의 매우 낮은 응력강하량을 가지며 에너지/모멘트 비가 매우 작으며 주로 해구의 매우 낮은 경사의 스러스트 단층에서 발생하는 것으로 분석이 된다. 한편 동해에서 해일을 유발한 지진들은 약30${\sim}$50bar의 응력강하량로서 에너지/모멘트비가 세계평균과 비슷한 스러스트 단층에서 발생하는 것으로 유추된다. 따라서 응력강하, 에너지/모멘트 비, 그리고 스러스트 단층의 경사각은 지진해일 발생특성을 나타내는 인자로 대표될 수 있다.

Keywords

References

  1. Abe, K., 1975, Static and dynamic fault parameters of the Saitama earthquake of JULY 1, 1968. Tectonophysics, 27, 223-238 https://doi.org/10.1016/0040-1951(75)90018-9
  2. Abe, K., 1995, Magnitudes and Moments of Earthquakes, Global Earthquake Physics, A Handbook of Physical Constants. AGU Reference Shelf 1
  3. Aki, K. and Richards, P.G., 2002, Quantitative Seismo1ogy. University Science Books, 2nd Edition
  4. Fukao, Y., 1979, Tsunami earthquakes and subduction processes near deep-sea trenches. Journal of Geophysical Research, 84, 2303-2314 https://doi.org/10.1029/JB084iB05p02303
  5. Gutenberg, B. and Richter, C.R., 1956, Earthquake magnitude, intensity, energy and acceleration. Bulletin of the Seismological Society of America, 46, 105-145
  6. Kanamori, H. and Anderson, D.L., 1975, Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of Ameiica, 65, 1073-1095
  7. Kanamori, H. and Kikuchi, M., 1993, The 1992 Nicaragua earthquake: a slow tsunami eaithquake associated with subducted sediments. Nature, 361, 714-716 https://doi.org/10.1038/361714a0
  8. Kostrov, V.V., 1974, Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Academy of Science USSR Physics of Solid Eaith, 1, 23-44
  9. Newman, A.V. and Okal, E.A., 1998, Teleseismic estimates of radiated seismic energy: The E/Mo discriminant for tsunami earthquakes. Journal of Geophysical Research, 103 (26) 885-898
  10. Pelayo, A.M. and Wiens, D.A. 1992, Tsumani earthquakes:S1ow thrust-faulting events in the accretionary wedge. Journal of Geophysical Research, 97 (15) 321-337 https://doi.org/10.1029/91JB02150
  11. Sapiro, N.M., Singh, S.K., and Pacheco, J., 1998, A fast and simple diagnostic method for identifying tsunamigenic earthquakes. Geophysical Research Letters, 25 (3) 911-914 https://doi.org/10.1029/98GL00329
  12. Tohoku University, 1995, Observation of continuous crustal change in Tohoku area. Report of Disaster Research Center