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A Case Study of an Activity Based Mathematical Education:
A Kernel Density Estimation to Solve a Dilemma for a
Missile Simulation

G. Daniel Kim(Oregon Univ.)

While the statistical concept “order statistics” has a great number of applications in our
society ranging from industry to military analysis, it is not necessarily an easy concept to
understand for many people. Adding some interesting simulation activities of this concept
to the probability or statistics curriculum, however, can enhance the learning curve greatly.
A hands-on and a graphic calculator based activities of a missile simulation were introduced
by Kim(2003) in the context of order statistics. This article revisits the two activities in
his paper and point out a dilemma that occurs from the violation of an assumption on two
deviation parameters associated with the missile simulation. A third activity is introduced
to resolve the dilemma in the terms of a kernel density estimation which is a nonparametric

approach.

1. INTRODUCTION

The statistical concept “order statistics” is usually introduced in the senior or first year
graduate level probability or statistics classes. It has abundant applications in our world
ranging from industry to military analysis. During World War II, British and Americans
tried to estimate the number of German tank production on the basis of the order statistics.
Unfortunately, it is not a very easy concept to understand for many people. Adding some
interesting simulation activities of this concept to the curriculum, however, can enhance the
learning curve greatly. A hands-on and a graphic calculator based activities of a missile
simulation were introduced by Kim(2003) in the context of order statistics. This article
revisits the two activities in his paper and discuss what kind of dilemma can occur when an

assumption on two deviation parameters associated with the missile simulation is violated.

Key words and phrases. missile simulation, normal distribution, order statistics, kernel density
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139



140 G. Daniel Kim

A third activity is introduced to resolve the dilemma in the context of a kernel density
estimation which is a nonparametric approach.

Suppose that an enemy target was detected in a combat zone, and a missile was fired
to a target point, say (u1,p2). Obviously, the missile may or may not hit the target. So
let us consider two variables X; and X, that identify the location where the missile hits,
where X; denotes the east-west coordinate of the location, and X the corresponding north-
south coordinate. Since the missile may not hit the target exactly, X; and X3 should be
considered as random variables. We make assumptions on X; and X, as follows: X; and
X, are independent, and have N(u1,07) and N(uz,03) distributions, respectively. Until we
reach the Activity IIl, we will assume that oy and o5 are equal to a common value o.

One would be interested in the amount of the error distance between the target and

where the missile hit, which is given by

Y= \/(Xl - u1)2 + (Xz — p,g)z.

The probability distribution of Y is stated in Lemma 1 and its proof can be found in
Kim(2003). '

Lemma 1. Suppose that X; and X, are independent random variables subject to normal
probability distributions with centers p; and ps, respectively, and the common standard
deviation 0. If Y = +/(X1 — 111)? + (X2 — p2)?, the probability density function of Y is

1) =51, yzo.

In modern air attack by field artillery, missile, or bomb attack, multiple number of shells
are fired at time. For example, a 155 mm or 105 mm howitzer company fires 4 to 6 shells at
a time. Some multiple rocket launching systems such as M270-MLRS fire up to 12 rockets
with a range up to 18 miles in less than a minute. The assessment of the effectiveness of
those multiple launching attack systems either by howitzer or by missiles is an important
issue with regard to the precision of the attack system.

Suppose that a multiple number, say n, of missiles are fired at a target. Let ¥3,Ys, -+, Y,
represent the error distances made by the missiles. Let Y3y = min{Y1,Ys,---,Y,} and
Yiny = max{Y},Ys,--- ,¥,}. Here the minimum order statistic ¥{;) represents the shortest
error distance to the target, and the maximum order statistic Y(,) the largest error distance
to the target. While Y{,) is attained by the hit with the lowest accuracy among the n
missiles, Y(;) is attained by the hit with highest accuracy. In Lemma 2, the probability
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distributions of the minimum and the maximum order statistics are stated without proofs,
which can be found in Kim(2003).

Lemma 2. Suppose Y;,Y5,---,Y, are defined as Y in Lemma 1. Then, the probability
density functions of Y(;y and Y, are given by

() fro@® = e 3, y>o.

®) fro,®) = % [1- e 3@ -3 y>o.
The population standard deviation o of the two random variables X; and X5 is unknown
in nature due to various unexpected natural, technical, and human factors. It will have

to be estimated based on a given sample set of outcomes. The following pooled standard

deviation s, was used to estimate o:

ltn—1)s2+ (n— 1)s3
n—2

where n represents the number of missile fired, and s? and s are the sample variances of X

Sp =

and Xo, respectively. Now we utilize Lemma 2 to consider two missile simulation activities.

2. SIMULATION ACTIVITIES

Three simulation activities are conducted with a group of 12 students who were taking
an advanced mathematical statistics course from the author during the spring term of 2002.
In Simulation I, samples of X; and X, are generated through a dart play, and in Simulation
II, graphing calculators are used to generate samples of X; and X,. Simulation III is devoted
to the case where 0, and o5 are significantly different. A nonparametric solution is suggested

and discussed.

SIMULATION 1I: A DART PLAY

The twelve students in the class were grouped in three, and each group was provided
with a dart and a dart board. One student in each group was chosen to play the role
of a shooter, and the other two students played the roles of observer and recorder. The
shooter who stood 1.2 meters away from the dartboard threw the dart to the target point
six times. For purposes of convenience we assumed that the target was located at the origin
and hence both p; and p, are assumed to be equal to zero. The observer measured the

horizontal coordinate X; and the vertical coordinate X, of the dart. The recorder gathered
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the observed values of X; and X3 in a.data collection sheet such as Table 1. After six shots,
students switched the roles so that everyone in each group could play all the three different
roles. After the data collection was completed, each student calculated the following two

quantities:

1) The error distance of each shot:

Y =/(X1 - )+ (Xo — p2)? = -/ XF + X3
2) The pooled sample standard deviation sp:

/(n— s+ (n—~1)s§ _ /5s]+5s3
2n—-2 10

Sp =

The pooled standard deviations s, by the twelve students were averaged out, which yielded
4.82 cm. We assumed that the quantity 4.82 cm represented the common population stan-

dard deviation ¢ of X; and X5 given the situation. In subsequent we assume o = 4.82

cm.
Table 1. Data Collection (The sample for shooter #1)
| Shot number | X | X2 | Y = /X7 + X2

1 5.27 -3.79 6.49
2 -9.45 2.01 9.66
3 3.64 1.46 3.92
4 2.11 -1.34 2.50
5 -3.74 -3.43 - 5.07
6 7.72- 1.18 7.81

Table 1 shows the observed values of X; and X, by the shooter #1, and in this case,
the minimum value y;) is obtained on the fourth shot and the maximum value y(s) on the
second shot. Table 2 put together all the observed values of the minimum order statistic
y(1) and the maximum order statistic y() by the 12 students. The sample means and the

sample standard deviations are calculated.

Table 2. Samples of Y(;) and Y(g of size 12, respectively

[Shooter #] 1 [ 2 [ 3 ] 4 | 5 6 |
Yo 2.5 [ 430 [1.80]1.44] 3.96 | 5.13
Ye) 9.66 | 13.83 | 5.09 { 10.9 | 19.05 | 20.40

[ 7 8 9 10 | 11 | 12 [Mean] SD |

3.06 | 1.57 | 3.05| 0.81 | 3.55 | 3.21 || 2.63 | 1.49
12.01 | 10.68 | 6.46 | 17.86 | 18.10 | 16.16 || 13.35 | 5.02
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To learn what are expected for Y1y and Y(s), the four theoretical quantities E(¥(1)),
E(Y)), Oy, and gy, were calculated. Students used their TI-89/83 calculators to eval-
uate the quantities based on the probability density function fy;,,(y) and fy,, (y) given in
Lemma 2. The results are displayed in Table 3 with their corresponding statistics side by
side. Figure 1 illustrates three graphs: (a) the probability density function of Y, (b) the
adjusted frequency histogram of the observed y(1)s in Table 2 and the probability density
function fy,,,(y), and (c) the adjusted frequency histogram of the observed y(g)s in Table
2 and the probability density function fy,(y). The probability density curve of Y in (a)
illustrates the probability distribution of the error distance Y if a single missile was fired.
The continuous curves in (b) and (c) show the probability distributions of Y{1) and Y{¢) if
six missiles were fired. A TI-89 graphing calculator was used for the graphs with window
dimensions Xmin=0, Xmax=22, and the class width=0.5.

Both Table 3 and Figure 1 (c) show that the theoretical expectation of the maximum
order statistic Y{g) and the empirical observation of the order statistic are not matching
very well. Two probable reasons pointed out by the students are: (1) the expected standard
deviation of the maximum order statistic, oy, = 2.55, is not so small, and (2) the sample

size of Y(g) was just twelve, which students interpreted as a small sample size.
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Figure 1. (a) The adjusted histogram of the g,y in Table 2 and the pdf of
Y(y), (b) The adjusted histogram of the y) in Table 2 and the pdf of Y

Table 3. The parameters and the statistics of Y{;) and Y

| Mean Sample mean I sb ] Sample SD
E(Y)) = 2.466 Y, = 263 v = 129 Sy = 149
B(Y(s)) = 1036 Ve = 13.35 Tvie) = 255 Sy = 502
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SIMULATION II: A CALCULATOR BASED ACTIVITY

The missile simulation of Lemma 2 was well realized through the data generated by
TI-89/83 calculators. Each student used the TI-89/83 built-in function “.randnorm()” or

“randnorm()” to generate data sets of X, and X3 of size 6. Then the distance formula, “min”

and “max” functions were used to calculate the minimum Y1) and the maximum y). Each
student repeated this procedure 100 times, instead of 12 times, as if there were 100 students
in the classroom. The similar computation and graphing activities as Simulation I were
repeated, and the results are presented in Table 4 and Figure 2. Like Figure 1, the graph (a)
in Figure 2 shows the probability density curve of Y, (b) the adjusted frequency histogram
of the 100 observed y(1)s and the probability density function fy,,,(y), and (c) the adjusted
frequency histogram of the 100 observed ys)s and the probability density function T (v)-
As both the numerical values in Table 4 and the graphical comparisons in (b) and {c) of
Figure 2 demonstrate, the conclusions of Lemma 2 are very well realized by the calculator-
generated data set. A TI-89 was used for the graphs in Figure 2 with the window dimensions
Xmin=0, Xmax=20, and the class width=0.5.
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Figﬁre 2. (a) The adjusted histogram of the sample size 100 and the pdf of
Y1), (b) The adjusted histogram of the sample size 100 and the pdf of Y,

Table 4. Parameters and statistics of the simulated data of size 300

[ Mean | Sample mean | SD | Sample SD ]
E(Y) = 2.466 ~ Y =583 Ty = 1.200 sy = 4.542
E(V() = 10.360 Y = 10241 Tyigy = 2550 | Sy = 2.208

SIMULATION III: A nonparametric model when ¢y and ¢, are not equal

The parametric models for the density functions of Y, ¥{3y, and ¥{g) provided in Lemmas

1 and 2 are based on the assumptions that the horizontal coordinate X; and the vertical
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coordinate X2 are independent random variables subject to normal probability distributions
with gy = 0 and po = 0, respectively, and shares the common standard deviation o. Through
discussions of dart play activities, students pointed out that in practice there is no guarantee
that o is shared by two variables. More students thought that oz may be larger than ¢, in
many circumstances where oy and g2 are the standard deviations of X; and X5, respectively.
In order to see how the density functions of Y{s) plays out when the deviation parameters are
significantly different, a data of size 100 of ¥{g) is generated with o1 = 1 and og. Figure 3(a)
shows the }iistogram of the data and fy,, (y) fit when 01 = 1 and o3 = 9. 1t appears that the
density function fy,,, (y) seems to fit the histogram reasonably except the right-tail domain
of the data. In fact, the parametric model significantly underestimates the density of the
right-tail domain of the data. As it can be seen in Table 5, the mean from the parametric

model is 13.77, which is a quite less value than the mean of the sample, 15.58.
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Figure 3. (a) The parametric fit fy,, (y) of the simulated data of Y(s) when

o1 = 1 and o2 =9, (b) The kernel density fit of the same data of (a). The
data is of size n = 100.

This brings up a question of whether there is a better density model that fits the data
in the entire domain when the two deviation parameters o, and o, are severely different. It
appears that solving this dilemma is not necessarily a simple task if the proof of Lemma 1 is
closely examined. In fact, the whole proof of Lemma 1 is on the basis of the equality of o;
and o9, and this was well understood and agreed by students as we made discussions on this
issue. As a way to get around the theoretical difficulty, a nonparametric approach called the
kernel density estimation model was suggested. The kernel density estimate is a data-driven

empirical function that smoothes out the shapes of the histogram in a neighborhood of a



146 G. Daniel Kim

given y value according to a kernel function. It is formally defined as

n

faly) = % Tw /2_'};&\ :

i=1

Here, h is a bandwidth, w(-), called a kernel function, is a continuous and symmetric prob-
ability density function, and n is the size of data. For our classroom use, h = 1.5, the
standard normal density function for the place of w(-), and n = 100 were applied. Figure
3(b) is the kernel density estimate of the histogram with Xmin=0, Xmax=32, and the class
width=1. As it shows, the nonparametric estimate does a great job to fit the histogram in
the entire domain of the data. Especially it fits well in the right domain of the data where
the parametric density model failed to estimate its exact densities. Table 5 compares the
numbers of the mean and the standard deviation of the data, the parametric model, and
the kernel density estimate. It indicates that the mean and the standard deviations of the
kernel density estimate model match with the simulated data a lot better than the ones of

the parametric model do.

Table 5. The means and the standard deviations of the data, the parametric

model, and the kernel density estimate model

Data of size 100 Parametric Model Kernel Estimate Model
Mean 15.580 13.770 15.575
SD 4.890 3.370 5.000

3. DIscuUsSsION

The statistical term “order statistic® has a number of important applications in our
society. Based on years of teaching experience the author perceived that average students
see the subject “order statistics” as a rather difficult concept to digest. In this article three
missile simulation activities with the perspectives of order statistics were considered. It was
the author’s perception that the missile simulation activities held the students’ attention,
and the concept of order statistics was delivered to the students successfully. Another
beneficial effect of the activity based curriculum was that the class came up with a variety

of fun and rich discussions. Some of them are summarized below:

1) Ladies beat Gentlemen?: The twelve students were composed of six male students
and six female students. As Table 2 of Simulation 1 indicates, the best shot among

the 12 shooters was the shooter #3 whose shots range from 1.80 cm to 5.09 cm.



2)

4)
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Interestingly enough, the shooter was a female student, not a male student. While
there is absolutely no intention to claim that female students shoots better in dart
play than male students do, observing such a thing in a small classrooms added a
lot of fun to the class.

Should ¢ be common to both X; and X57: It seems that for minor difference
between o; and o3, the parametric density model of the maximum order statistic
Y(g) fits the histogram of the data in reasonable manner. However, it appears that
the quality of the fit diminishes as the difference between the two deviation param-
eters gets larger. Especially, the parametric model underestimates the density in
the right-tail domain of the data. This may cause serious underestimation of the
risk of collateral damage by the worst fire in real battle field when multiple shots
are fired. In Activity III, we studied that a nonparametric solution could be used
to solve this dilemma.

Three dimensional target and Moving Target: The students saw the possibility that
without much technical difficulty, Lemma 2 can be extended to a three dimensional
target point (p1, 2, 13). They also understood that if the target was a moving
object instead of a steady object, the target point has to be identified as a stochastic
process, and simulating such an idea would be challenging.

Dart Play versus Calculator: As discussed previously, Lemma 2 was better real-
ized by the calculator-generated data set than by the dart play-generated data set.
Students pointed out, however, that the dart play provides more realistic situation
because in battle field there exist a lot of factors that are uncertain and unpre-
dictable. As Figure 1 (c) shows, in practice actual results can deviate from theory

considerably, in their case being quite off the mark.
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