몇가지 희토류원소의 DC 폴라로그램에 관한 연구

Studies on DC Polarograms of Some Rare Earth Elements

  • 투고 : 2003.02.15
  • 심사 : 2003.04.09
  • 발행 : 2003.06.25

초록

몇가지 희토류 원소의 DC폴라로그램을 여러 가지 지지전해질과 여러 pH용액에서 얻었다. $Sm^{3+}$은 0.1 M NaCl 지지전해질에서 두 단계 환원파가 -1.75 V와 -1.95 V에서 나타났고 확산 지배파였다. 0.1 M $(C_2H_5)_4NCl$ 지지전해질에서 $Eu^{3+}$은 -0.75 V와 -1.95 V에서, $Yb^{3+}$은 -1.45 V 와 -2.0 V에서 두 단계 환원파가 나타났다. $La^{3+}$$Nd^{3+}$은 -1.75 V 근처에서 단일 환원파만이 나타났다. $Eu^{3+}$, $Yb^{3+}$$Sm^{3+}$의 반파전위의 차는 이들 이온의 분리 정량을 가능하게 하였다. $Eu^{3+}$과 EDTA 및 Diethylenetriamine pentacetic acid (DTPA) 간의 착물의 생성상수를 구한 결과 문헌값과 일치 하였다.

The DC polarograms of some rare earth elements have been investigated in various pH solution and electrolytes. Samarium ion has two well-defined reduction waves at -1.75 V and -1.95 V in 0.1 M NaCl solution and those are a diffusion controlled in nature. Europium and ytterbium ions give also two step reduction waves at -0.75 V and -1.95 V for europium and -1.45 V and -2.00 V for ytterium in $(C_2H_5)_4NCl$ solution. On the other hand, lantanium and neodium ions show a single reduction wave at -1.75 V. The differences of half wave potentials between europium, ytterium and samarium ions make it possible to determine each ions in the mixed solution sponteniously. In case of europium ion, the stability constants for the complexs of $Eu^{3+}$-EDTA and $Eu^{3+}$-DTPA are evaluated.

키워드

참고문헌

  1. Bull. Korean Chem. Soc. v.21 no.5 K.W. Cha;C.I. Park
  2. Talanta v.40 no.10 A reversible optode membrane for picric acid based on the fluorescence quenching of pyrene H.H. Zeng https://doi.org/10.1016/0039-9140(93)80370-7
  3. Anal. Sci. & Tec. v.10 no.6 K.W. Cha;K.W. Park
  4. Analytica Chimica Acta v.476 no.1 Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): an investigation of rare earth element signatures i T.P. Rao;V.M. Biju https://doi.org/10.1016/S0003-2670(02)01368-5
  5. Analytical Chemistry v.30 no.2 A. Zikri;J.P. Anthong https://doi.org/10.1021/ac60134a005
  6. Chemical Geology v.191 no.1 An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 oC and pH from 1.5 to 10 H.O. Eric;P. Frank https://doi.org/10.1016/S0009-2541(02)00149-3
  7. Angewandte Chemie v.50 no.20 W. Noddack;A. Bruck https://doi.org/10.1002/ange.19370502005
  8. Journal of the American Chemical Society v.79 no.8 I.M. Kolthoff;J.K. Coetzee https://doi.org/10.1021/ja01565a023
  9. Z. Electrochem. v.45 L. Holleck
  10. Journal of the American Chemical Society v.70 no.4 A. Timnick;G. Glockler https://doi.org/10.1021/ja01184a019
  11. Inorganic Chemistry v.2 no.1 J. F. Coetzee;W.S. Siao https://doi.org/10.1021/ic50005a004
  12. Journal of the Chemical Society A Inorganic Physical Theoretical J.B. Headridge;D.Pletcher;M.Callingham https://doi.org/10.1039/j19670000684
  13. Journal of the American Chemical Society v.70 no.4 C.R. Estee;G. Glokler https://doi.org/10.1021/ja01184a018
  14. J. Electrochem. Soc. India, Communicated K.S. Pitre;V.K. Chitale
  15. Journal of the American Chemical Society v.79 no.8 I.M. Kolthoff;J.K. Coetzee https://doi.org/10.1021/ja01565a023
  16. Industrial & Engineering Chemistry Analytical Edition v.13 no.11 H.H. Laitinen;W.A. Taebel https://doi.org/10.1021/i560099a029
  17. Quantitative Chemical Analysis, (4th Ed.) I.M. Kolthoff;E.B. Sandell;E.J. Meehan
  18. J. Chem. Educ. v.47 T. Moeller