Study on uranium metalization yield of spent pressurized water reactor fuels and oxidation behavior of fission products in uranium metals

사용후핵연료의 우라늄 금속 전환율 측정 및 전환체 내 핵분열생성물의 산화거동 연구

  • 최계천 (한국원자력연구소, 원자력화학연구팀) ;
  • 이창헌 (한국원자력연구소, 원자력화학연구팀) ;
  • 김원호 (한국원자력연구소, 원자력화학연구팀)
  • Received : 2003.09.09
  • Accepted : 2003.11.27
  • Published : 2003.12.25

Abstract

Metalization yield of uranium oxide to uranium metal from lithium reduction process of spent pressurized water reactor (PWR) fuels was measured using thermogravimetric analyzer. A reduced metal produced in the process was divided into a solid and a powder part, and each metalization yield was measured. Metalization yield of the solid part was 90.7~95.9 wt%, and the powder being 77.8~71.5 wt% individually. Oxidation behaviour of the quartemary alloy was investigated to take data on the thermal oxidation stability necessary for the study on dry storage of the reduced metal. At $600{\sim}700^{\circ}C$, weight increments of alloy of Mo, Ru, Rh and Pd was 0.40~0.55 wt%. Phase change on the surface of the alloy was started at $750^{\circ}C$. In particular, Mo was rapidly oxidized and then the alloy lost 0.76~25.22 wt% in weight.

가압경수로 사용후핵연료 (이산화 우라늄)의 리튬환원공정으로부터 생산된 우라늄 금속 전환체에 대한 금속 전환율을 건식방법인 열중량분석법 (T.G.A)으로 측정하였다. 전환체를 고체와 분말로 분류하여 측정한 결과 우라늄 금속 전환율은 각각 90.7~95.9 및 77.8~71.5 wt% 이었다. 금속 전환체의 건식저장 시 열적 산화 안정성을 확인하기 위하여 전환체내에 함유되어 있는 Mo, Ru, Rh 및 Pd 합금에 대한 산화 거동을 조사하였다. 합금을 $600{\sim}700^{\circ}C$의 공기분위기에서 산화시킨 결과 0.40~0.55 wt%의 무게증가를 보였으며 $750^{\circ}C$부터는 표면으로부터 산화가 진행되어 상변화가 일어났다. $900^{\circ}C$에서는 Mo의 휘발에 의한 영향으로 0.76~25.22 wt%의 무게 감소를 나타내었다.

Keywords

References

  1. M. D. Freshly, Nucl. Tech., 18, 141-144(1973).
  2. S. Sawai, Y. Iwakoshi, Nucl. Tech., 88, 219-232(1989).
  3. D. Hass and A. Vander Gheynst, Nucl. Tech., 106, 60-82(1973).
  4. C. C. Mcpheeters, R. D. Virce and T. P. Mulcaehy, 'Pyroprocessing oxide spent nuclear fuels for efficient disposal', ANL/CMT/CP84354, 1994.
  5. E. Jkarell, R. D. Pirce and T. P. Mulcaehy, 'Treatment of oxide spent nuclear fuel using the lithium reduction process', ANL/CMT/CP-89562, 1996.
  6. S. G. Ro et al., 'Development of advanced spent fuel management process', KAERlfTR994/98, 1998.
  7. C. E. Till and Y. I. Chang, 'The integral fast reactor (lFR)concept', Proceedings of the american power conference 51, 688, Chicago, Illinois, 24-26, 1989.
  8. T. Usami et al., 'Behavior of actinide elements in the Li reduction process(1)', 日本 電力中 央硏究所 報告 T99089, 1999.
  9. Y. J. Shin et al., 'Development of advanced spent fuel management process,' KAERI/RR-2128/2000, 2000.
  10. M. Fujie, Y. Shoji and T.Kobayashi, 'Development of lithium process for reprocessing LWR spent fuel', Proceedings ofGLOVAL, '95, p.I448, 1995.
  11. T. Usami, M. lizuka and T. Koyama, 'Analysis of reduction behavior of oxide fuels by lithium using U02 and simulated materials', Proceedings of GLOVAL, '95, p.1472, 1995.
  12. R. J. Me. Eachen, D. C. Doen, D. D. Wood, Journal of Nuclear Materials, 252, 145-149(1998)