습식 산화 분위기에서의 산화 인듐 나노선의 합성 및 구조적 특성

Synthesis and Characterization of $In_2O_3$ Nanowires in a Wet Oxidizing Environment

  • 정종석 (한국과학기술원 재료공학과) ;
  • 김영헌 (한국과학기술원 재료공학과) ;
  • 이정용 (한국과학기술원 재료공학과)
  • Jeong, Jong-Seok (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Young-Heon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jeong-Yong (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 발행 : 2003.03.01

초록

습식 산화 분위기에서 vapor-solid process를 통해 금속 촉매를 사용하지 않고도 낮은 온도에서 산화 인듐나노선을 성공적으로 합성하였다. 나노선은 x-선 회절(XRD), 분산 x-선 분광 분석기(EDS)를 갖춘 주사전자현미경(SEM), 투과전자현미경(TEM)을 통해 분석되었다. XRD 결과는 합성된 산화 인듐 나노선이 입방정 구조를 갖는다는 것을 보여준다. 이러한 나노선들은 두 가지 형태를 갖는다. 하나는 줄기에 약 500 nm 크기의 각진 나노입자가 형성된 형태이고 다른 하나는 나노입자가 형성되지 않은 형태이다. 나노선의 길이는 수 마이크로미터 범위이고, 두께는 약 10 nm에서 250 nm 범위이다. 나노선은 결함을 포함하지 않았으며 표면에 5 nm 이하의 비정질 층을 가지고 있었다. TEM 분석 결과 대부분의 나노선의 성장 방향은 <100> 방향이었으나 나노입자를 포함한 나노선은 <110> 방향으로 자랐다는 것이 발견되었다. 이러한 성장 방향은 이전의 문헌에서 보고되지 않은 새로운 결과이다. 일반적인 성장 방향과는 다른 새로운 방향으로 나노선이 자랄 수 있었던 것은 본 연구에서 산화물 합성 시 산소의 공급원으로 사용된 습식 분위기와 비교적 낮은 온도가 원인인 것으로 생각된다. 따라서 습식 산화 분위기에서의 나노선 합성법을 다른 여러 산화물의 나노선 합성에 응용한다면 낮은 온도에서 새로운 형태 및 성장 방향을 갖는 나노선을 얻을 수 있을 것으로 예상된다.

Indium oxide ($In_2O_3$) nanowires were successfully synthesized by a simple reaction in a wet oxidizing environment at low temperature without metal catalyst. The nanowires were characterized by an x-ray diffraction (XRD), a scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS), and a transmission electron microscopy (TEM). It was shown that the $In_2O_3$ nanowires were two types of morphology, uniform nanowires and nanowires containing $In_2O_3$ nanoparticles in its stem. It was found that lengths of the nanowires were ranges of several micrometers and their diameters were around $10{\sim}250$ nm. The growth direction of the nanowires was investigated and their growth mechanism is also discussed.

키워드

참고문헌

  1. Bai ZG, Yu DP, Zhang HZ, Ding Y, Gal XZ, Hang QL, Xiong GC, Feng SQ: Nano scale GeO2 wires synthesized by physical evaporation, Chern Phys Lett 303 : 311 314, 1999 https://doi.org/10.1016/S0009-2614(99)00066-4
  2. Bhat VK, Pattabiraman M, Bhat KN, Subrahmanyam A: The growth of ultrathin oxides of silicon by low temperature wet oxidation technique, Mater Res Bull 34 : 1797 1803, 1999 https://doi.org/10.1016/S0025-5408(99)00158-0
  3. Choi YC, Kim WS, Park YS, Lee SM, Bae OJ, Lee YH, Park GS, Choi WB, Lee NS, Kim JM: Catalytic growth of $\beta$ Ga2O3, nanowires by arc discharge, Adv Mater 12: 746 750, 2000 https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746>3.0.CO;2-N
  4. Galasso FS: Structure and properties of inorganic solid, Per-gamonpress, NewYork,pp,99 102, 1970
  5. Han WQ, Fan SS, Li QQ, Hu YO: Synthesis of gallium nitride nanorods through a carbon nanotube confined reaction, Science 277: 1287 1289, 1997 https://doi.org/10.1126/science.277.5330.1287
  6. Han WQ, Kohler Redlich P, Ernst F, Ruhle M: Growth and icrostructure of Ga2O3, nanorods, Solid State Comm 115 : 527 529, 2000 https://doi.org/10.1016/S0038-1098(00)00238-6
  7. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P: Catalytic growth of zinc oxide nanowires by vapor transport, AdvMater 13 : 113 116, 2001
  8. Iijima S: Helical microtubules of graphitic carbon, Nature 354: 56 58, 1991 https://doi.org/10.1038/354056a0
  9. Jia HQ, Chen H, Wang WC, Wang wx, Li W, Huang Q, Zhou J: The study thennal stability during wet oxidation of AlAs, J Crystal Growth 223: 484 488, 2001 https://doi.org/10.1016/S0022-0248(01)00647-9
  10. Liang CH, Meng GW, Lei Y, Phillipp F, Zhang L: Catalytic growth of semiconducting In2O3, nanofibers, Adv Mater 13 : 1330 1333, 2001 https://doi.org/10.1002/1521-4095(200109)13:17<1330::AID-ADMA1330>3.0.CO;2-6
  11. Pan ZW, Dai ZR, Wang ZL: Nanobelts of semiconducting oxides, Science 291: 1947 1949, 2001 https://doi.org/10.1126/science.1058120
  12. Shi W, Zheng Y, Wang N, Lee CS, Lee ST: A general synthetic route to III V compound semiconductor nanowires, Adv Mater13 :591 594, 2001 https://doi.org/10.1002/1521-4095(200104)13:8<591::AID-ADMA591>3.0.CO;2-#
  13. Wagner RS, Ellis WC: Vapor liquid solid mechanism of single crystal growth, Appl Phys Lett 4: 89 90, 1964 https://doi.org/10.1063/1.1753975
  14. Wang N, Tang YH, Zhang YF, Yu DP, Lee CS, Bello I, Lee ST: Transmission electron microscopy evidence of the de-feet structure in Si nanowires synthesized by laser ablation, Chern Phys Lett 283: 368 372, 1998 https://doi.org/10.1016/S0009-2614(97)01378-X
  15. Wu Y, Yang P: Melting and welding semiconductor nano- wires in nanotubes, Adv Mater 13 : 520 523, 2001 https://doi.org/10.1002/1521-4095(200104)13:7<520::AID-ADMA520>3.0.CO;2-W
  16. Yang P, Lieber CM: Nanorod superconductor composites: A pathway to materials with high critical current densities, Science 273: 1836 1840, 1996 https://doi.org/10.1126/science.273.5283.1836
  17. Yang P, Lieber CM: Nanostructured high temperature super-conductors: Creation of strong pinning columnar defects in nanorod/superconductor omposites, J Mater Res 12 : 2981 2996, 1997 https://doi.org/10.1557/JMR.1997.0393
  18. Yu DP, Hang QL, DingY, Zhang HZ, Bai ZG, Wang JJ, Zou YH, Qian W, Xiong GC, Feng SQ: Appl Phys Lett 73 : 3076 3078, 1998 https://doi.org/10.1063/1.122677
  19. Zhang HZ, Kong YC, WangYZ, Du X, Bal ZG, Wang JJ, Yu DP, Ding Y, Hang QL, Feng SQ: Ga2O3, nanowires prepared by physical evaporation, Solid State Comm 109 : 677 682, 1999 https://doi.org/10.1016/S0038-1098(99)00015-0
  20. Zheng MJ, Zhang LD, Zhang XY, Zhang J, Li GH: Fabrication and optical absorption of ordered indium oxide nanowire arrays embedded in anodic alumina membranes, Chern Phys Lett 334 : 298 302, 2001 https://doi.org/10.1016/S0009-2614(00)01426-3
  21. Zhu YQ, Hu WB, Hsu WK, Terrones M, Grobert N, Hare JP, Kroto HW, Walton DRM, Terrones H: SiC SiOx heterojunctions in nanowires, J Mater Chern 9 : 3173 3178, 1999 https://doi.org/10.1039/a905547i