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I . Introduction

Since Pontryagin et al (1962) developed the maximum principle as a
solution technique for the problem of dynamic optimization, optimal

control theory has been extensively applied to areas of economics to
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identify the optimal time paths for economic variables. The features of
the maximum principle are essentially characterized by the roles of three
distinctive variables. The control variables unambiguously determine the
state variables through the state equations describing the laws of motion
of the state variables. The costate (adjoint) variables denote the shadow
values of the state variables associated with them. In addition, the
necessary conditions for the optimization substantially correspond to the
sufficient conditions for the optimization (Halkin, 1966). In this respect,
optimal control theory has been considered as a more simple but powerful
method for solving the problem of dynamic optimization. Previous
literature on optimal control theory (Pontraygin et al, 1962; Hestenes,
1966; Dorfman, 1969; Long and Vousden, 1977, Kamien and Schwartz,
1981; Conrad and Clark, 1987, Hanley et al, 1997) have proposed
numerous maximum principles to be applied to the wvarious types of
optimal control problems. In particular, for the discrete time optimal
control problem (DTOCP) the authors stated above provide the maximum
principle only for the cases in which the state equation is in the form of
the difference equation. However, when we model economic problems
using discrete time optimal control theory we have encountered the cases
in which the state equation is not in the form of the difference equation
but in the form of a general equation. We, thus, assert that the
maximum principle proposed by the previous literature does not directly
apply to the problems that we have come across. In this context, we
want to develop a maximum principle to tackle the DTOCP in which the
state equation takes the form of a general equation, not of the difference
equation.

For this purpose, we first review the maximum principle proposed by
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the previous literature for the DTOCP. We, then, present our maximum
principle to be used for the DTOCP as a general one. As shown below,
our maximum principle, in particular, differs from that proposed by the
previous literature in identifying the law of motion of the costate
variables. We also show that the maximum principle proposed by the
previous literature is a subclass of ours. Finally, we use the problem of
natural resource as an example that illustrate the utilization of our

maximum principle as a solution technique.

II. The Maximum Principles

In this section, we first review the maximum principle proposed by the
previous literature for the DTOCP, referring, in particular, to Conrad and
Clark (1987). The DTOC problem for this case is described as

Max gf(utx,, )+ S(xp) (1)

subject to

X1 —x = &(uy, xy)

Xy = %! given

where ¢#=0,1,2, - T is the set of time periods, and ¢=0 and ¢=7T
denote the intial time period and the terminal time period, respectively.

u; represents a control variable in time period £ x, represents a state
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variable describing the system in time period ¢ f(-) represents the
payoff function or the net economic return. S( -) represents the scrap

(or terminal) value function at the terminal time period. And x,41—x, =
g(u,, x,) denotes the law of motion of the state variable. The

Lagrangian function for this problem can be written as

=1
_ go Ftr o )+ Ao+ gCus, x0)—xa0) + S(xr)

where A,.; denotes the Lagrangian multiplier associated with x,;. The

first order necessary conditions for the optimality are

af(ut,xt,t) ag(utyxt)
du, AT g,

for t=20,1,2,,T—1

=0 (2)

A=A, = —(-—_——af(”f'xf"") ag(uhxt))

ax, +/1[+1 ax,

for t=0,1,2,,T—1
Xop1—x: = gy, x4) for t=0,1,2,,7T—1 4)

_ dS(xT)
A T — de (5)

Xg = X given (6)

If we define the Hamiltonian at time period ¢ as

H(up e t,Am) = fug, 208+ 418w, x0)
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Then, some of the first order necessary conditions are interpreted in
terms of the Hamiltonian such as

759-2% =0 for t=0,1,2, T—1 (2
A=A, = — gfi for t=0,1,2,, T—1  (3a)
iol—%p = ajﬁl for t=0,1,2,~,T—1  (da)

These last three equations plus equation (5) and (6) denote the maximum

principle proposed by the previous literature for the DTOCP.

The Maximum Principle for the General Case

Let us consider the DTOCP in which the state equation is not in the

form of the difference equation but takes the form of a general equation.
The DTOCP for this case can be described as

-1
Max ZO fu,x,t)+ S(xr)
subject to

Xi+1 = h(uz, x4)

Xy = x° given

where x,.;= h(u,, x,) represents the law of motion of the state

variable. We build up the Lagrange function for this problem as
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=1
L= 20 flug, 20 8) + A (h(u,, x)—x 441 + Slxr)
Then, the first order necessary conditions for the optimality are

0f(uy, x4, t) oh(u;, x,) _
~ om, +At+1a—ut’" =0 )

for t=0,1,2,-, T—1

 0f(us, x, t) Oh(us, %)
At - axt +/1t+l axt (9)

for t=0,1,2,--,T—1

Xir1 = hQus, x4) for t=0,1,2,-,7T—1 (10)
Ar= —a%g—) (11)
xg = x°  given (12)

If we establish the Hamiltonian at time period ¢ as

H(u,,x[, t,/lt+1) = f(u,,x,, l‘)+/1t+1h(u,,xt)

Then, some of the first order necessary conditions are transformed into

0H  _ _ .

du, 0 for t=0,1,2,, T—1 (8a)

/1[ — ————g for t: 0’1,2,...’ T_l (93)
Xt

X1 = 9 for t=10,1,2,-, T—1 (10a)
04 141
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Thus, our maximum principle can be gathered from these last three
results and equation (11) and (12). These differ from the maximum
principle obtained above only in the law of motion of the state and

costate variable. In addition, we can view S(x¢) as the solution function
for this same maximization problem over the time horizon between T
and o, and S(x7_;) can be viewed as the solution function over time

horizon from 7—1 to 7. This is an application of the Bellman’s (1957)
optimality principle and backward recursion. With this we can state that
equation (11) holds for ¢=0,1,2,:, T—1. For time 7—1, we can

write

S*(xT—l) = f*(uT—1, XT-1, 7T—1) + S*(h(uT-l, xT—l))

where the superscript (*) denotes the optimum. Applying equation (11)

for T—1 we get

P _ dS(xr-1) _ of (ur—y, %x7r-1, T—1)
o &1 0x7-1 (13)

o Oh(ur—q, x7-1)

+ ST (h(ur-1, x7-1)) aTx;_1 -l

and applying equation (11) to equation (13), we obtain

2 — dS(xT_l) _ 8f*(uT_1,xT_1, T"l)

o der-) 9%7-1 (11a)
Oh(ur—y, x7-1)
+ Ar xr
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Based on this result, we can state that the law of motion for the costate

variable can be expressed as follows:

ds
A= —a%‘) for ¢=0,1,2,, T
or
Of (s, x4 t) ACTRD.
R AR

for ¢t=20,1,2,--, T—1

Now, let us apply our maximum principle to the cases in which the state
equation is in the form of the difference equation. To elicit the maximum
principle stated above using the Hamiltonian that we used, let us build
up the following maximization problem by changing the difference
equation of state variable, x,4;—x, = g(u,, x,), into x,01=x,+g(u,,
x ). The maximization problem denoted as equation (7) is, then, changed

into
=1
Max g Flu,x, ) +S(x,+g(u,x,))

Thus, we get

Of(u x4, t) + dS(x,41) 0g(u,,xy)
au, dxH_l aut

for t=0,1,2,---7T—1

=0
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If we establish the Hamiltonian function at time period ¢ as
H(u,, x4t 2 i) = flug, 20 t) + A (x it 2wy, x4))
We obtain
OH(u,x 1 t,Ars1) _ 0f(uy, x4 1) 0g(u;, x,)

ou, - ou, t Ar ou ,
=0 for ¢t=20,1,2,-,T—1

Thus, we finally have that

dsS
A1 = agxi)::l) for t=0,1,2,---, T—1 (14

With this result, we illustrate the procedure of deriving the law of motion

of costate variable. At time ¢, the optimum value of S will be

S*(xt) = f*(ut,xt, )+ S*(xt+g(ut,xt))
Then,

3S'(x) A (unxnt)

0x ; 0x ;

dS*(xt+1)
dx 141

_+.

(1+ 8g(ut,xt))

axt
for ¢t=0,1,2,--,T—1

Using equation (14), equation (15) can be changed into
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of (u,,x,,t 0 ,
A= ~——f(zg;tx’ ) +At+1(1+~——g(;‘;[xf) 16)
for t=0,1,2,-7T—1
Thus,
of (uy,x;,t) o0g(u;,x,)
] AL N L ALY

for t=20,1,2,--,T—1

In this respect, we derive the first order necessary conditions and
transversality conditions stated above using our Hamiltonian. As a result,
we can state that our maximum principle is a general one that contains

the maximum principle proposed by the previous literature.

II. An Economic Example

In this section, we take a look at the Timber Supply Model 2000
(TSM 2000) developed by Lee and Lyon (2001) as an example of applying
our maximum principle to economic problems. The TSM 2000 is
developed to analyze the dynamic behavior of the global timber market
by incorporating important additional components of the global timber
market that has been occurred in recent years.)) To see how our

maximum principle is applied to the TSM 2000, we first summarize the

1) Refer to Lee and Lyon (2001) for more detailed information about important additional
components of the global timber market.
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formulation of the TSM 2000 and then examine the procedure of deriving
the equations that we solve to find the optimal time paths for economic

variables.

Equations

The objective of the TSM 2000 is to maximize the total benefit of the
society as a whole, not the private profit of an individual landowner.
Also, the TSM 2000 decomposes the total industrial wood harvests into
solidwood and pulpwood production. Thus, net surplus of vear ; is

defined as

Q; P
Di(n)dn + Jo D¥(n)dn — C

/ 0

where @, is the quantity of timber for solidwood harvested in year j;
Dj(n) is the inverse demand function of industrial solidwood in year ;
Q; is the quantity of timber for pulpwood harvested in year j; D*(n)
is the demand of industrial pulpwood in inverse form; and C; is the total

cost in year ;. The total cost are the summation of harvest, access,

transportation costs (CH ;), and the regeneration cost (CR;). Harvesting

and transportation costs in year j depend on the total volume harvested
by land class, and regeneration costs depend on hectares harvested
(regenerated) and the level of input used.

For the formulation, define x, to be a state vector of hectares of trees
in each age group for land class 7% in year ; with element x,; The

subscript %, 7, and j correspond to land class, age group, and the year,
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respectively. Let z, be the state vector for the regeneration input with
element z,; which is the level of regeneration input associated with age
group 7 in year j for land class & Next, u, is the control vector of
hectares harvested. The elements of u,; denote for land class 7% the
portion of the hectares of trees in age group ¢ harvested in year ;. Let
w, be the level of regeneration input per hectare for those hectares
regenerated in year 7 and p ., be the price of regeneration input for land
class &

The merchantable volume of timber per hectare for land class % in
year ; for a stand regenerated ¢ time periods ago depends on ¢ and on
the magnitude of the regeneration input used on this stand (z.;). We

denote this merchantable volume as

a i = Fild, 2 15)

This volume is divided between solidwood and pulpwood using variable

proportions which vary by land class, with ¢, the portion going to solid
wood and (1—¢,) the portion going to pulpwood? With these

definitions, the volume of commercial timber harvested for solidwood and

pulpwood from land class % in year jis given by

2) The proportion ¢, is a constant elasticity function of the price of solidwood relative
to pulpwood (p3/p?). It is given by ¢,=A,(p;/p?)° where p° and p’ are
solidwood and pulpwood price, relatively; e is the elasticity of ¢ with respect to
rlative price, which is the same for all land classes, and A, is a scaling factor that

varies by land class.

- 168 -



The Application of Discrete Time Optimal Control Theory to Natural Resource Problems

Qu = bnwn Xpidu

PN

Qi

Il

(A=) wr Xpau

and

Qx :;th @h =ZJ@;U-

where X ,; is a diagonal matrix using the elements of x,, and the total

volume harvested in the responsive regions is the summation of these
over all land classes. Costs including harvest, access, and transportation
cost for land class % is a function of the volume harvested in that land

class;
CHu = ci(Qy + Q)

and regeneration cost for land class % in year jis given by
CR ) = (up %3 T 01D wn Wi

where the inner product in parenthesis gives the hectares harvested in
land class %, v, is the exogenously determined number of hectares of
new forest land in land class 7% and the product of the last two terms

gives expenditure per hectare. This yields total cost of

Cjzg(Cth‘f‘ Cth)
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With these definitions, the objective function of TSM 2000 will be the

discounted present value of the net surplus stream as follows;

Solxg, 20, u, w) = gpksk(xk, z) + 0/ Si(x;, 2)) an

where p is the discount factor; J is the last time period of the model
time horizon; % is any admissible set of control vectors; w is any set of
admissible control scalars; and S7(-) is the optimal terminal value
function. Equation (18) is to be maximized over the control variables
subject to the state equations and the constraints. The constraints for

control variables and the state equations for the given system are given by

0<u,<1 for all 4,17 (18a)
0<wy for all &,j (18b)
Xnji+1 — (A+BUhj)x;,j + U pie for all h,] (19a)
Zpi+1 = Az + wye for all 4, (19b)
where
0 0 0 O 0] [ 1]

1 0 0 0 0 0

01 0 0 0 0

_ 10 0 1 0 0 10

A 00 0 1 0 ¢ :

L0 0 0 0 0 0 1 0 0
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11 1 1 1]

-1 0 0 0 0

0 -1 0 0 0
-0 0 -1 0 0
B 0 0 0 -1 0
o 0 0 0 0 0 —1 0]

A,B, and U are M-square matrices; U, is a diagonal matrix using
the elements of u,; and e is an M-vector where M is equal to or

greater than the index number of the oldest age group in the problem.

Maximum Principle

The problem of maximizing objective function (17) subject to the
constraint equations (18a) through (19b) is the DTOCP that can be
solved by the discrete time maximum principle. As stated above, the
maximum principle is a theorem that the constrained maximization of
equation (17) can be decomposed into a series of subproblems. In each

time period, the following Hamiltonian is maximized with respect to u;
and w, subject to constraints. The Hamiltonian for year j can be

written as

Q, Q,
H; = fo Di(n)dn +f0 D¥m)ydn—C;
+;Aé,j+1[(A+BUhj)xhj+ v el

+ ;(fl}z,ﬁ.l (AZ hj“f‘ wh,-e)
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where

/ihj = p[dS;(xj,zj)/dxh,»] (203)

Aw = o[ (dsi(x;, z)/dey) + (A+BU) A4 j+1]

and

¢ = oldS] (x;,z))/dz ] (20b)
S P[(ds;(xj, zj)/dzhj) +A,¢h,j+1]

The derivatives with respect to vectors are a gradient vector, and
Sii1( ) is the solution function in year j+1. The A, and ¢, is the
costate variables associated with x, and z,, respectively, and identify

the shadow values of the hectares of forest and regeneration input. For

this problem, the Lagrangian function can be written as

LY =H; + géh/(l_uhj)
and the Kuhn-Tucker necessary conditions are

LM 0u, = [¢wDAQ)+(1—¢,)DAR) —ci(Qy+ Q1))

X 1@ 15— % 1D i i+ X 5B Ap i1 —Ep <0

for all 2
(L ¥10u y)u,y =0 for all % and ¢
AL 0wy = —wupxybwt ¢nje1 <0 foral h
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(L ' ow 1 )w 4 = 0 for all % and i
AL, = (1—uy) 20 for all %
(L J/3E 1))E 4 = 0 for all % and i

These Kuhn-Tucker conditions, the state equations (equation 19a and
19b), and the laws of motion for the costate variables (equation 20a and
20b) identify a two-point boundary problem that can be used to solve
both theoretical and numerical problems. These are the equations that we

solve to find the optimal time paths for economic variables.

IV. Conclusive Remarks

Because the maximum principle proposed by the previous literature can
be applied only to the problem in which the state equation is in the form
of the difference equation, we developed our maximum principle to be
used for the DTOCP in which the state equation takes the form of
general equation. When we compare our maximum principle with that
proposed by the previous literature, we identify that the difference
between them lies in the laws of motion for the costate variables. In
particular, by applying the Bellman’s optimality principle and backward
recursion we found that the maximum principle proposed by the previous
literature is a subclass of our maximum principle. We, therefore, can
state that our maximum principle is a general solution technique for the
DTOCP in economics. Finally, we took the TSM 2000 as an illustrative
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example to apply our maximum principle as a solution technique, and

derived the equations that we use to identify the optimal time paths for

the variables. We furthermore feel that our maximum principle can be

elaborated for the stochastic DTOCP in economics.
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