Protective Effect of Sophorae Subprostratae Radix and Each Fractions on PC12 cell Damage Induced by Hypoxia/Reperfusion

PC12 세포의 허혈모델에 있어 광두근 분획물의 항산화효과연구

  • Jo Jin Hwan (Department of Anatomy-Pointlogy College of Oriental Medicine, Kyungwon University) ;
  • Kim Youn Sub (Department of Anatomy-Pointlogy College of Oriental Medicine, Kyungwon University)
  • 조진환 (경원대학교 한의과대학 해부경혈학) ;
  • 김연섭 (경원대학교 한의과대학 해부경혈학)
  • Published : 2003.12.01

Abstract

This research was performed to investigate protective effect of Sophorae subprostratae Radix and each fractions against ischemic damage using PC12 cells. To observe the protective effect of Sophorae subprostratae Radix on ischemia damage, vibility and changes in activities of Superoxide dismutase (SOD), Glutathione Peroxidase (GPx), Catalase and Production of Malondialdehyde (MDA) were observed after treating PC12 cells with Sophorae subprostratae Radix during ischemic insult. Groups were divided into five groups: no treated (Normal), hypoxia chamber for 48hrs followed by 6h at normoxic chamber (H/R), Sop horae subprostratae Radix total phase treated group with H/R (Total), Sophorae subprostratae Radix water phase treated group with H/R (Water), Sophorae subprostratae Radix BuOH phase treated group with H/R (BuOH), Sophorae subprostratae Radix alkaloid phase treated group with H/R (Alkaloid). The results showed that (1) in hypoxiajreperfusion model using PC12 cell, the Sophorae subprostratae Radix has the protective effect against ischemia in the dose of 0.2 ㎍/㎖, 2 ㎍/㎖ and 20 ㎍/㎖, (2) Sophorae subprostratae Radix increased the activities of glutathione peroxidase and catalase. (3) the activity of Superoxide Diamutase(SOD) increased by ischemic damage, which might represent the self protection. This study suggests that Sophorae subprostratae Radix has neuroprotective effect against neuronal damage following hypoxiajreperfusion cell culture model using PC12 cell and dose dependency effects. In conclusion, Sophorae subprostratae Radix has protective effects against ischemic oxidative damage at the early stage of ischemia.

Keywords

References

  1. 임상중풍학 김영석
  2. J Neurochem v.47 Failure to maintain glycolysis in anoxic nerve terminals Kauppinen, R.A.;Nicholls, D.G.
  3. Rev Physiol Biochem Pharmacol. v.70 The interrelationship between sodium and calcium fluxes across cell membranes Blaustein, M.P.
  4. J Neurochem v.43 Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitiored by intracerebral microdialysis Benveniste, H.;Drejer, J.;Scyhousboe, A.;Diemer, N.H.
  5. Brain Nerve. v.40 Changes of monoamine neurotransmitter metabolism in brain ischemia measured by in vivo voltammetry Ogura, K.;Shibuya, M.;Kanamori, M.
  6. J Neurochem. v.48 Mechanism of arachidonic acid liberation during ischemia and gerbil cerebral cortex Abe, K.;Kogure, K.;Yamamoto, H.
  7. J Neurochem. v.40 Effects of cerebral ischemia on [3H]inositol lipids and [3H]inositol phosphates of gerbil brain and subcellular fractions Strosznajder, J.;Wikiel, H.;Sun, G.Y.
  8. J Neurochem. v.47 Polyphosphinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia Ikeda, M.;Yoshida, S.;Busto, R.
  9. Neuropharmacology v.8 Modification of GABA and calcium uptake by lipids in synaptosomes from normoxic and ischemic brain Noremberg, K.;Strosznajder, J.
  10. Life Sci. v.30 Ionic shift in cerebral ischemia Yanagihara, T.;McCall, J.T.
  11. Exp Brain Res. v.95 Free radicals and brain damage due to transient middle cerebral artery occlusion: the effect of dimethylthiourea Kiyota, Y.;Pahlmark, K.;Memezawa, H.;Smith, M.;Siesjo, B.K.
  12. Brain Nerve v.39 Correlation with lipid peroxidation, brain energy metabolism and edema Uenohara, H.;Imaizumi, S.;Yoshimoto, T.;Suzuki, J.
  13. J Neurochem. v.45 Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and in vitro Drejer, J.;Benveiste, H.;Diemer, N.H.;Schousboe, A.
  14. Trends Neurol Sci. v.17 Triggering and execution of neuronal death in brain ischemia: two phases of glutamate release by different mechanisms Szatkowski, M.;Attwell, D.
  15. QJM: Monthly Journal of the Association of Physicians v.92 Plasma chain-breaking antioxidants in Alzheimer's disease, vascular dementia and Parkinson's disease Foy, C.J.;Passmore, A.P.;Vahidassr, M.D.;Young, I.S.;Lawson, J.T.
  16. 한방내과학회지 v.15 no.1 비증에 관한 동서의학적 고찰 김상수;고성규;조기호;김영석;배형섭;이경섭
  17. 東醫寶鑑 許浚
  18. Chem Pharm Bull. v.18 no.12 Antitumor activity of Leguminosae plants constituents. I. Antitumor activity of constituents of Sophora Subprostrata Kojima, R.;Fukushima, S.;Ueno, A.;Saiki, Y.
  19. J Ocul Pharmacol. v.3 Ocular anti-inflammatory action of matrine Chuang, C.Y.;Xaio, J.G.;Chiou, G.C.
  20. Eur J Pharmacol. v.337 no.2;3 Antinociceptiveeffects of (+)-matrine in mice Kamei, J.;Xiao, P.;Ohsawa, M.;Kubo, H.;Higashiyama, K.;Takahashi, H.;Li, J.;Nagase, H.;Ohmiya, S.
  21. Neuron. v.1 Glutamate neurotoxicity and diseases of the nervous system Choi, D.W.
  22. Yao Xue Xue Bao. v.31 no.12 Effects of inhibitor of protein kinase C on brain edema formation evoked by experimental cerebral ischemia in gerbils and rats Hu, Z.L.;Tan, Y.X.;Zhang, J.P.;Qian, D.H.
  23. J Cereb Blood Flow Metab. v.14 Blood-brain barrier permeability and brain concentration of sodium, potassium, and chloride during focal ischemia Betz, A.L.;Keep, R.F.;Beer, M.E.;Ren, X.D.
  24. J Cereb Blood Flow Metab. v.14 no.4 Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats Karibe, H.;Zarow, G.J.;Graham, S.H.;Weinstein, P.R.
  25. 대한한의학회지 v.20 廣豆根이 白鼠 中大腦動脈 閉鎖에 의한 局所腦虛血損傷에 미치는 保護效果 이현삼;정혁상;강철훈;손낙원
  26. Anal Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford, M.M.
  27. Biol. Chem. v.244 Mccord, J.M.;Fridovich, L.J.
  28. Methods in enzymatic analysis Catalase in vitro Hugo, A.
  29. CRC Handbook of Methods for Oxygen Radical Research Oxidative enzymes in tissue homogenate Maestro, R.D.;McDonald, W.
  30. Anal Biochem. v.95 Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction Ohkawa, H.;Ohishi, K.;Yagi, K.
  31. J cerebr Blood Flow Metab. v.16 Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? Du,C.;Hu, R.;Csernansky, C.A.;Hsu, C.Y.;Choi, D.W.
  32. Brain Res. v.239 Delayed neuronal death in the gerbil hippo-campus following ischemia Kirino, T.
  33. 東國大學校大學院 韓醫學科(박사학위논문) 淸肺瀉肝湯이 중대뇌동맥 폐쇄 후 재관류에 미치는 영향 吳延煥
  34. Ann Neurol. v.34 Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain Mecocci, P.;MacGarvey, U.;Kaufman, A.E.;Koontz, D.;Shoffner, J.M.;Wallace, D.C.;Beal, M.F.
  35. Biochemical Society Transactions v.24 Glutathione in disease Harding, J.J.;Blakytny, R.;Ganea, E.
  36. Methods in Enzymatic Analysis v.8 Glutathione and glutathione disulphide Griffith, O.W.
  37. Physiological Reviews v.50 Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role Deisseroth, A.;Dounce, A.L.
  38. Neurosci Lett. v.286 no.3 Protective effects of huperzine A on beta-amyloid(25-35) induced oxidative injury in rat pheochromocytoma cells Xiao, X.Q.;Wang, R.;Han, Y.F.;Tang, X.C.
  39. Molecular Aspects of Medicine v.8 The importance of free radicals and catalytic metal ions in human diseases Halliwell, B.;Gutteridge, J.M.
  40. Brain Res. v.843 Evaluation of lipid peroxidation, cathepsin L and acid phosphatase activities in experimental brain ischemia reperfusion Islekel, H.;Islekel, S.;Guner, G.;Ozdamar, N.
  41. Int J Devl Neurosci. v.13 Age-related changes in antioxidant enzymes, superoxide dismutase, catalase, glutathione peroxidase and glutathione in different regions of mouse brain Hussain, S.;slikker, W.;Ali, S.F.
  42. J Biol Chem. v.257 Superoxide radical inhibits catalase Kono, Y.;Fridovich, I.