GRÖBNER-SHIRSHOV BASIS
 AND ITS APPLICATION

Sei-Qwon OH* and Mi-Yeon Park**

Abstract

An efficient algorithm for the multiplication in a binary finite filed using a normal basis representation of $F_{2^{m}}$ is discussed and proposed for software implementation of elliptic curve cryptography. The algorithm is developed by using the storage scheme of sparse matrices.

1. Introduction

Buchberger introduced the Gröbner basis theory for commutative algebras that provides a effective solution to the reduction problem for commutative algebras [2]. It was generalized to associative algebras through Bergman's Diamond Lemma [1].

Shirshov developed the parallel theory of Gröbner bases for Lie algebras [9]. Shirshove's theory for Lie algebras and their universal enveloping algebras is called Gröbner-Shirshov basis theory.

In this paper, we introduce the Gröbner-Shirshov basis theory and find the Gröbner-Shirshov basis for quantum algebras.

More precisely, we introduce the Gröbner-Shirshov basis theory for a free k-algebra and we find the Gröbner-Shirshov basis for several quantum k-algebras defined by generators and relations,

$$
U_{q}^{\prime}(\mathfrak{s l}(2)), \mathcal{O}_{q}\left(M_{2}(k)\right), \mathcal{O}_{q}\left(S L_{2}(k)\right)
$$

Received by the editors on February 7, 2003.
2000 Mathematics Subject Classifications: 16S.
Key words and phrases: Elliptic Curve Cryptography, Binary finite field, Normal basis.
and McConnell-Pettit Algebra.
Throughout this paper, k will denote the ground field of characteristic zero, every vector space will be over k and every algebra will be an associative k-algebra with unity.

2. Gröbner-Shirshov Basis Theory

Let X be a set and let X^{*} be the free monoid of associative monomials on X. We denote the empty monomial by 1 and the length of a monomial u by $l(u)$. Thus we have $l(1)=0$.

Definition 2.1. $[\mathbf{3}, 1.1]$ A well-ordering \prec on X^{*} is called a monomial order if $x \prec y$ implies $a x b \prec a y b$ for all $a, b \in X^{*}$.

Fix a monomial order \prec on X^{*}, let T_{X} be the free k-algebra generated by X, let I be a two sided ideal of T_{X} and let $T_{0}=T_{X} / I$. The image of $p \in T_{X}$ in T_{0} under the canonical quotient map will also be denoted by p.

Fix a subset \mathcal{A} of X^{*} which forms a k-linear basis of T_{0}. Given a nonzero element $p \in T_{0}$, we denote by $\bar{p} \in \mathcal{A}$ the maximal monomial appearing in p under the ordering \prec. Thus $p=\alpha \bar{p}+\sum \beta_{i} w_{i}$ with $\alpha, \beta_{i} \in k, w_{i} \in \mathcal{A}, \alpha \neq 0$ and $w_{i} \prec \bar{p}$. If $\alpha=1$, then p is said to be monic.

Definition 2.2. [8, 1.2] Fix a monomial order on X^{*} and a subset \mathcal{A} of X^{*} which forms a k-linear basis of $T_{0}=T_{X} / I$. Let S be a subset of monic elements of T_{0}. A monomial $u \in \mathcal{A}$ is said to be S-standard in T_{0} if $u \neq a \bar{s} b$ for any $s \in S$ and $a, b \in \mathcal{A}$. Otherwise, the monomial u is said to be S-reducible in T_{0}.

Theorem 2.3. Every $p \in T_{0}$ can be expressed as

$$
\begin{equation*}
p=\sum \alpha_{i} a_{i} s_{i} b_{i}+\sum \beta_{j} u_{j} \tag{2.1}
\end{equation*}
$$

where $\alpha_{i}, \beta_{j} \in k ; a_{i}, b_{i}, u_{j} \in \mathcal{A} ; s_{i} \in S ; a_{i} \bar{s}_{i} b_{i} \preceq \bar{p} ; u_{j} \preceq \bar{p} ;$ and u_{j} are S-standard.

Proof. It is proved by mimicking the proof of $[4,3.2]$.
The term $\sum \beta_{j} u_{j}$ in the expression (2.1) is called a normal form (or a remainder) of p with respect to S.

Definition 2.4. $[\mathbf{8}, 1.2]$ Let p and q be monic elements of T_{0}. (a) If there exist a and b in \mathcal{A} such that $\bar{p} a=b \bar{q}=w$ with $l(\bar{p})>l(b)$, then the composition of intersection is defined to be $(p, q)_{w}=p a-b q$. (b) If there exist a and b in \mathcal{A} such that $a \neq 1, a \bar{p} b=\bar{q}=w$, then the composition of inclusion is defined to be $(p, q)_{w}=a p b-q$.

Example 2.5. Let $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
If $p=x_{1}^{2} x_{3}-x_{2} x_{4}$ and $q=x_{3}^{2} x_{2}+x_{1}$, then we have a composition of intersection:

$$
\begin{aligned}
(p, q)_{x_{1}^{2} x_{3}^{2} x_{2}} & =\left(x_{1}^{2} x_{3}-x_{2} x_{4}\right) x_{3} x_{2}-x_{1}^{2}\left(x_{3}^{2} x_{2}+x_{1}\right) \\
& =x_{1}^{2} x_{3}^{2} x_{2}-x_{2} x_{4} x_{3} x_{2}-x_{1}^{2} x_{3}^{2} x_{2}-x_{1}^{3} \\
& =-x_{2} x_{4} x_{3} x_{2}-x_{1}^{3}
\end{aligned}
$$

Fix a subset \mathcal{A} of X^{*} which forms a k-linear basis of $T_{0}=T_{X} / I$. Let S be a subset of monic elements of T_{0} and let J be the two sided ideal of T_{0} generated by S.

Let $p, q \in T_{0}$ and $w \in X^{*}$. We define a congruence relation on T_{0} as follows: $p \equiv q \bmod (J ; w)$ if and only if $p-q=\sum \alpha_{i} a_{i} s_{i} b_{i}$, where $\alpha_{i} \in k ; a_{i}, b_{i} \in \mathcal{A} ; s_{i} \in S ; a_{i} \bar{s}_{i} b_{i} \prec w$.

Definition 2.6. [8, 1.3] A subset S of monic elements in T_{0} is said to be closed under composition in T_{0} if $(p, q)_{w} \equiv 0 \bmod (J ; w)$ for all $p, q \in S, w \in \mathcal{A}$, whenever the composition $(p, q)_{w}$ is defined.

Theorem 2.7. [8, 1.5] Fix a subset \mathcal{A} of X^{*} which forms a k-linear basis of $T_{0}=T_{X} / I$. Let S be a subset of monic elements of T_{0} and let J be the two sided ideal of T_{0} generated by S. Then the following are equivalent:
(i) S is closed under composition in T_{0}.
(ii) The subset of \mathcal{A} consisting of S-standard monomials in T_{0} forms a k-linear basis of the algebra T_{0} / J.

Definition 2.8. [4, 2.5] A subset S of monic elements of T_{0} is called a Gröbner-Shirshov basis if the subset of \mathcal{A} consisting of S-standard monomials in T_{0} forms a k-linear basis of the algebra T_{0} / J. In this case, we say that S is a Gröbner-Shirshov basis for the algebra T_{0} / J defined by S.

3. Poincaré-Birkhoff-Witt Theorem for Quantum Algebras

3.1. Algebra $U_{q}^{\prime}(\mathfrak{s l}(2))$

Definition 3.1. [5, VI.1.1] We define $U_{q}=U_{q}(\mathfrak{s l}(2))$ as the algebra generated by the four variables E, F, K, K^{-1} with the relations

$$
\begin{gathered}
K K^{-1}=K^{-1} K=1 \\
K E K^{-1}=q^{2} E \\
K F K^{-1}=q^{-2} F
\end{gathered}
$$

and

$$
[E, F]=\frac{K-K^{-1}}{q-q^{-1}}
$$

A Hopf algebra $U_{q}=U_{q}(\mathfrak{s l}(2))$ is an one-parameter deformation of the enveloping algebra of the Lie algebra $\mathfrak{s l}(2)$. When the parameter q is not a root of unity, the algebra U_{q} has properties parrel to those of the enveloping algebra of $\mathfrak{s l}(2)$.

Proposition 3.2. [5, VI.1.4] The algebra U_{q} is Noetherian and has no zero divisors. The set $\left\{E^{i} F^{j} K^{l}\right\}_{i, j \in \mathbb{N} ; l \in \mathbb{Z}}$ is a basis of U_{q}.

One expects to recover $U=U(\mathfrak{s l}(2))$ from U_{q} by setting $q=1$. This is impossible with Definition 3.1. So, we first have to give another presentation for U_{q}.

Proposition 3.3. [5, VI.2.1] The algebra U_{q} is isomorphic to the algebra U_{q}^{\prime} generated by the five variables K, K^{-1}, L, E, F and the relations

$$
\begin{gathered}
K K^{-1}=K^{-1} K=1, \\
K E K^{-1}=q^{2} E, \\
K F K^{-1}=q^{-2} F \\
{[E, F]=L} \\
\left(q-q^{-1}\right) L=K-K^{-1}, \\
{[L, E]=q\left(E K+K^{-1} E\right),} \\
{[L, F]=-q^{-1}\left(F K+K^{-1} F\right) .}
\end{gathered}
$$

Observe that, contrary to U_{q}, the algebra U_{q}^{\prime} is defined for all values of the parameter q, in particular for $q=1$.

Theorem 3.4. The algebra U_{q}^{\prime} has a k-linear basis

$$
\mathfrak{B}=\left\{K^{l} E^{m} F^{n} \mid l=0, \pm 1, \pm 2, \cdots ; m, n=0,1,2, \cdots\right\} .
$$

Proof. Let T_{0} be the free k-algebra generated by K, K^{-1}, L, E and F.

We give an ordering $<$ on the set of generators of T_{0} by

$$
K<K^{-1}<L<E<F .
$$

The degree of a monomial $u=u_{1} \cdots u_{l} \in T_{0}$, where $u_{j}=K, u_{j}=$ K^{-1},
$u_{j}=L, u_{j}=E$, or $u_{j}=F$, is defined by $\operatorname{deg}(u)=l$.
We now give a well-ordering \prec on the set of all monomials in T_{0} as follows:

For monomials $u=u_{1} \cdots u_{l}$ and $v=v_{1} \cdots v_{m}$, we denote $u \prec v$ if one of the following conditions holds:
(i) $\operatorname{deg}(u)<\operatorname{deg}(v)$
(ii) $\operatorname{deg}(u)=\operatorname{deg}(v)$ (hence $l=m), u_{1}=v_{1}, \cdots, u_{r}=v_{r}$ and $u_{r+1}<v_{r+1}$ for some r.

Note that the ordering \prec is a monomial order.[8]
We shall replace K^{-1} by K^{\prime} for convenience. So, the given relations can be expressed as follows :

$$
\begin{gather*}
K^{\prime} K-K K^{\prime}=0 \tag{3.1}\\
E K-q^{-2} K E=0 \tag{3.2}\\
F K-q^{2} K F=0 \tag{3.3}\\
F E-E F+L=0 \tag{3.4}\\
L-\frac{1}{q-q^{-1}}\left(K-K^{\prime}\right)=0 \tag{3.5}\\
K E L-K L E+q K E K+q E=0 \tag{3.6}\\
K F L-K L F-q^{-1} K F K-q^{-1} F=0 . \tag{3.7}
\end{gather*}
$$

Let S be the subset of monic elements of T_{0} consisting of (3.1), (3.2), (3.3), (3.4), (3.5), (3.6) and (3.7), and let J be the two sided ideal of T_{0} generated by S. By Theorem 2.10, it is enough to show
that the generators of J are closed under composition in T_{0}. There are only nine possible compositions among the generators of J :

$$
\begin{aligned}
& \left(K^{\prime} K-K K^{\prime}, \quad K E L-K L E+q K E K+q E\right)_{K^{\prime} K E L} \\
& \left(K^{\prime} K-K K^{\prime}, \quad K F L-K L F-q^{-1} K F K-q^{-1} F\right)_{K \prime K F L} \\
& \left(F E-E F+L, \quad E K-q^{-2} K E\right)_{F E K} \\
& \left(E K-q^{-2} K E, \quad K E L-K L E+q K E K+q E\right)_{E K E L} \\
& \left(E K-q^{-2} K E, \quad K F L-K L F-q^{-1} K F K-q^{-1} F\right)_{E K F L} \\
& \left(F K-q^{2} K F, \quad K E L-K L E+q K E K+q E\right)_{F K E L} \\
& \left(F K-q^{2} K F, \quad K F L-K L F-q^{-1} K F K-q^{-1} F\right)_{F K F L} \\
& \left(K E L-K L E+q K E K+q E, \quad L-\frac{1}{q-q^{-1}}\left(K-K^{\prime}\right)\right)_{K E L} \\
& \left(K F L-K L F-q^{-1} K F K-q^{-1} F, \quad L-\frac{1}{q-q^{-1}}\left(K-K^{\prime}\right)\right)_{K F L} .
\end{aligned}
$$

For the each case, S is closed under composition in T_{0}. Thus, the set

$$
\left\{K^{i}\left(K^{-1}\right)^{j} E^{m} F^{n} \mid i \cdot j=0 ; i, j, m, n=0,1,2, \cdots\right\}
$$

is a basis of $T_{0} / J=U_{q}^{\prime}$, and so S is a Gröbner-Shirshov basis for the algebra U_{q}^{\prime}.

3.2. Algebra $\mathcal{O}_{q}\left(M_{2}(k)\right)$ and $\mathcal{O}_{q}\left(S L_{2}(k)\right)$

Theorem 3.5. [7] Let $0 \neq q \in k$. The coordinate ring of quantum 2×2-matrices, denoted by $\mathcal{O}_{q}\left(M_{2}(k)\right)$, is the k-algebra generated by a, b, c, d, subject to the relations

$$
\begin{gathered}
a b=q^{2} b a, \quad a c=q^{2} c a, \\
b c=c b, \quad b d=q^{2} d b \\
c d=q^{2} d c
\end{gathered}
$$

$$
a d-d a=\left(q^{2}-q^{-2}\right) b c
$$

Assume that q is not a root of unity. Then the algebra $\mathcal{O}_{q}\left(M_{2}(k)\right)$ has a k-linear basis

$$
\mathfrak{B}=\left\{a^{i} b^{j} c^{m} d^{n} \mid i, j, m, n=0,1,2, \cdots\right\} .
$$

Proof. Let T_{0} be the free k-algebra generated by a, b, c and d.
We give an ordering $<$ on the set of generators of T_{0} by

$$
a<b<c<d
$$

The degree of a monomial $u=u_{1} \cdots u_{l} \in T_{0}$, where $u_{j}=a, u_{j}=$ $b, u_{j}=c$ or $u_{j}=d$, is defined by $\operatorname{deg}(u)=l$.

We now give a well-ordering \prec on the set of all monomials in T_{0} as Theorem 3.4.

The given relations can be expressed as follows:

$$
\begin{gather*}
b a-q^{-2} a b=0, \quad c a-q^{-2} a c=0 \tag{3,8}\\
c b-b c=0, \quad d b-q^{-2} b d=0 \tag{3.9}\\
d c-q^{-2} c d=0 \tag{3.10}\\
d a-a d+q^{2} b c-q^{-2} b c=0 \tag{3.11}
\end{gather*}
$$

Let S be the subset of monic elements of T_{0} consisting of (3.8), (3.9), (3.10), and (3.11), and let J be the two sided ideal of T_{0} generated by S.

By Theorem 2.10, it is enough to show that the generators of J are closed under composition T_{0}. There are only four possible compositions among the generators of J :

$$
\begin{array}{ll}
\left(c b-b c, \quad b a-q^{-2} a b\right)_{c b a}, & \left(d b-q^{-2} b d, \quad b a-q^{-2} a b\right)_{d b a} \\
\left(d c-q^{-2} c d, \quad c a-q^{-2} a c\right)_{d c a}, & \left(d c-q^{-2} c d, \quad c b-b c\right)_{d c b} .
\end{array}
$$

Thus, the set $\mathfrak{B}=\left\{a^{i} b^{j} c^{m} d^{n} \mid i, j, m, n=0,1,2, \cdots\right\}$ is a basis of $T_{0} / J=\mathcal{O}_{q}\left(M_{2}(k)\right)$, and so S is a Gröbner-Shirshov basis for the algebra $\mathcal{O}_{q}\left(M_{2}(k)\right)$.

The element of $\mathcal{O}_{q}\left(M_{2}(k)\right)$

$$
\begin{equation*}
\operatorname{det}_{q}=a d-q^{2} b c \tag{3.12}
\end{equation*}
$$

is called the quantum determinant.
Definition 3.6. Let J^{\prime} be the two sided ideal of $\mathcal{O}_{q}\left(M_{2}(k)\right)$ generated by $a d-q^{2} b c-1$. Then we can define the algebra

$$
\mathcal{O}_{q}\left(S L_{2}(k)\right)=\mathcal{O}_{q}\left(M_{2}(k)\right) / J^{\prime}
$$

Corollary 3.7. The algebra $\mathcal{O}_{q}\left(S L_{2}(k)\right)$ has a k-linear basis

$$
\mathfrak{B}^{\prime}=\left\{a^{i} b^{j} c^{m} d^{n} \mid j \cdot m=0 ; i, j, m, n=0,1,2, \cdots\right\} .
$$

Proof. Let S^{\prime} be the relation $a d-q^{2} b c-1$ and let J^{\prime} be the two sided ideal of $\mathcal{O}_{q}\left(M_{2}(k)\right)$ generated by S^{\prime}.

By Theorem 2.10, it is enough to show that the generator of J^{\prime} is closed under composition in $\mathcal{O}_{q}\left(M_{2}(k)\right)$. Thus, the set

$$
\mathfrak{B}^{\prime}=\left\{a^{i} b^{j} c^{m} d^{n} \mid j \cdot m=0 ; i, j, m, n=0,1,2, \cdots\right\}
$$

is a basis of $\mathcal{O}_{q}\left(S L_{2}(k)\right)$, and so S^{\prime} is a Gröbner-Shirshov basis for the algebra $\mathcal{O}_{q}\left(M_{2}(k)\right) / J^{\prime}=\mathcal{O}_{q}\left(S L_{2}(k)\right)$.

3.3. McConnell-Pettit Algebra

Example 3.8. (McConnell-Pettit Algebra) [6] Let $\bar{q}=\left(q_{i j}\right)$ be a matrix with nonzero entries in k such that $q_{i i}=1$ and $q_{i j}=q_{j i}^{-1}$. Let
$\mathcal{O}_{q}\left(k^{n}\right)$ be the k-algebra generated by $x_{1}, x_{2}, \cdots, x_{n}$ subject to the relations

$$
\begin{equation*}
x_{i} x_{j}-q_{i j} x_{j} x_{i} \quad \text { for all } i>j \tag{3.13}
\end{equation*}
$$

Then $\mathcal{O}_{q}\left(k^{n}\right)$ has a k-linear basis $\mathfrak{B}=\left\{x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}} \mid i_{j}=0,1,2, \cdots\right\}$.
Proof. Let T_{0} be the free k-algebra generated by $x_{1}, x_{2}, \cdots, x_{n}$.
We give an ordering $<$ on the set of generators of T_{0} by

$$
x_{1}<x_{2}<x_{3}<\cdots<x_{n}
$$

The degree of a monomial $u=u_{1} \cdots u_{l} \in T_{0}$, where $u_{j}=x_{k}$ for some k
$(k=1,2, \cdots n)$, is defined by $\operatorname{deg}(u)=l$.
We now give a well-ordering \prec on the set of all monomials in T_{0} as Theorem 3.4.

Let S be the subset of monic elements of T_{0} consisting of (3.13), and let J be the two sided ideal of T_{0} generated by S. By Theorem 2.10, it is enough to show that the generators of J are closed under composition in T_{0}. There is only one possible composition among the generators of $J:\left(x_{i} x_{j}-q_{i j} x_{j} x_{i}, \quad x_{j} x_{k}-q_{j k} x_{k} x_{j}\right)_{x_{i} x_{j} x_{k}} \quad(i>j>k)$.

$$
\begin{aligned}
\left(x_{i} x_{j}-q_{i j}\right. & \left.x_{j} x_{i}, \quad x_{j} x_{k}-q_{j k} x_{k} x_{j}\right)_{x_{i} x_{j} x_{k}} \\
& =x_{i} x_{j} x_{k}-q_{i j} x_{j} x_{i} x_{k}-x_{i} x_{j} x_{k}+q_{j k} x_{i} x_{k} x_{j} \\
& =-q_{i j} x_{j} x_{i} x_{k}+q_{j k} x_{i} x_{k} x_{j} \\
& \equiv-q_{i j} x_{j}\left(q_{i k} x_{k} x_{i}\right)+q_{j k}\left(q_{i k} x_{k} x_{i}\right) x_{j} \\
& =-q_{i j} q_{i k} x_{j} x_{k} x_{i}+q_{j k} q_{i k} x_{k} x_{i} x_{j} \\
& \equiv-q_{i j} q_{i k}\left(q_{j k} x_{k} x_{j}\right) x_{i}+q_{j k} q_{i k} x_{k}\left(q_{i j} x_{j} x_{i}\right) \\
& =-q_{i j} q_{i k} q_{j k} x_{k} x_{j} x_{i}+q_{j k} q_{i k} q_{i j} x_{k} x_{j} x_{i} \\
& \equiv 0 \bmod \left(J ; x_{i} x_{j} x_{k}\right) .
\end{aligned}
$$

References

1. G.M.Bergman, The diamond lemma for ring theory, Adv. Math. 29 (1978), 178-218.
2. B.Buchberger, An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal, Ph.D. Thesis, University of Innsbruck (1965).
3. Seok-Jin Kang and Kyu-Hwan Lee, Gröbner-Shirshov bases for irreducible $\mathfrak{s l}_{n+1}$-modules, J. Algebra 232 (2000), 1-20.
4. Seok-Jin Kang and Kyu-Hwan Lee, Gröbner-Shirshov bases for representation theory, J. Korean Math. Soc. 37 (2000), 55-72.
5. Christian Kassel, Quantum Groups, Springer-Verlag, 1995.
6. J.C.McConnell and J.J.Pettit, Crossed products and multiplicative analogues of Weyl algebras, J. London Math. Soc. (2) 38 (1988), 47-55.
7. Sei-Qwon Oh, Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices, Comm. Algebra 27 (1999), 2163-2180.
8. Sei-Qwon Oh, Chun-Gil Park and Yong-Yeon Shin, A Poincaré-Birkhoff-Witt theorem for Poisson enveloping algebras, Comm. Algebra (To appear).
9. A.I.Shirshov, Some algorithmic problems for Lie algebras, Siberian Math. J. 3 (1962), 292-296.

*

Sei-Qwon Oh
Department of Mathematics
Chungnam National University
TaEjon 305-764, Korea
E-mail: sqoh@math.cnu.ac.kr

**
Mi-Yeon Park
Department of Mathematics
Chungnam National University
TaEjon 305-764, Korea

