JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 15, No. 2, December 2002

FLOWS INDUCED BY COVERING MAPS

HEE SOON JUNG* AND KYUNG BOK LEE**

ABSTRACT. The purpose of this paper is to prove flow induced by a covering map. Lee and Park had studied semiflows induced by a covering map in 1997 [1]. This proof differs from the proof of Lee and Park. Notice that for the proof of this paper, we use the fact that \mathbb{R} is connected space.

K.B. Lee and J.S. Park had studied semiflows induced by a covering map in 1997 [1]. In this paper, we shall have the same result for flow and covering map. Notice that for the proof of this paper, we use the fact that \mathbb{R} is connected space. A *flow* in the space X is a function $q = \phi(p, t)$ which assigns to each point p of the space X and to each real number $t \ (-\infty < t < \infty)$ a definite point $q \in X$ and possesses the following three properties; (1) Initial conditions: $\phi(p, 0) = p$ for any point $p \in X$. (2) Group property: $\phi(\phi(p, t_1), t_2) = \phi(p, t_1 + t_2)$ for any point $p \in X$ and any real t_1 and t_2 . (3) Continuous condition: map $\phi: X \times \mathbb{R} \to X$ is continuous.

THEOREM 1. A space X is connected if and only if the only subsets of X that are both open and closed in X are the empty set and Xitself.

Proof. See [2]

Received by the editors on December 9, 2002. 2000 *Mathematics Subject Classifications*: 58F20. Key words and phrases: Flow, covering map.

THEOREM 2. For any flow (X, ϕ) and a covering map $P: \overline{X} \to X$, there exists a unique flow $(\overline{X}, \overline{\phi})$ such that $P(\overline{\phi}(\overline{x}, t)) = \phi(P(\overline{x}), t)$ for all $\overline{x} \in \overline{X}$ and $t \in \mathbb{R}$.

Proof. Let $\phi : X \times \mathbb{R} \to X$ be a flow and let $P : \overline{X} \to X$ be a covering map.

For all $\overline{x} \in \overline{X}$ and $t \in \mathbb{R}$, put $x \equiv p(\overline{x})$. Define a map $\alpha(s) = \phi(x, st)$ for $s \in I = [0, 1]$. Then α is a path in X from x to $\phi(x, t)$. Let $\overline{\alpha} : I \to \overline{X}$ be a lifting of α beginning at \overline{x} .

Define a map $\overline{\phi}: \overline{X} \times \mathbb{R} \to \overline{X}$ by $\overline{\phi}(\overline{x}, t) = \overline{\alpha}(1)$. Then from

$$P(\overline{\phi}(\overline{x},t)) = P(\overline{\alpha}(1)) = \alpha(1) = \phi(x,t) = \phi(P(\overline{x}),t)$$

, we obtain $P \circ \overline{\phi} = \phi \circ P$. Also, the uniqueness of $\overline{\phi}$ is clear. First, to prove conditions of flow, we prove that $\overline{\alpha * \beta} = \overline{\alpha} * \overline{\beta}$. Let $\overline{x} \in \overline{X}$ and $t, u \in \mathbb{R}$. Define a map $\alpha : I \to X$ by $\alpha(s) = \phi(x, st)$. Then α is a path in X from x to $\phi(x, t)$. Let $\overline{\alpha} : I \to \overline{X}$ be a lifting of α beginning at \overline{x} . Define a map $\beta : I \to X$ by $\beta(s) = \phi(\phi(x, t), su)$. Then β is a path in X from $\phi(x, t)$ to $\phi(\phi(x, t), u) = \phi(x, t + u)$. Let a map $\overline{\beta} : I \to \overline{X}$ be the lifting of β beginning at $\overline{\phi}(\overline{x}, t)$. Then we obtain $\overline{\phi}(\overline{\phi}(\overline{x}, t), u) = \overline{\beta}(1)$.

Define a map $\gamma: I \to X$ by $\gamma(s) = \phi(x, s(t+u))$. Then γ is a path in X from x to $\phi(x, t+u)$.

Let a map $\overline{\gamma}: I \to \overline{X}$ be the lifting of γ beginning at \overline{x} . From the definition, we obtain $\overline{\phi}(\overline{x}, t+u) = \overline{\gamma}(1)$.

Let $\overline{\alpha * \beta} : I \to \overline{X}$ be the lifting of $\alpha * \beta$ beginning at \overline{x} . Then, $\overline{\alpha} * \overline{\beta}(0) = \overline{\alpha}(0) = \overline{x}$. Also, if $0 \leq s \leq \frac{1}{2}$, then $P(\overline{\alpha} * \overline{\beta}(s)) = P(\overline{\alpha}(2s)) = \alpha(2s)$ and if $\frac{1}{2} \leq s \leq 1$, $P(\overline{\alpha} * \overline{\beta}(s)) = P(\overline{\beta}(2s-1)) = \beta(2s-1)$. Therefore, $P \circ (\overline{\alpha} * \overline{\beta}) = \alpha * \beta$. From the uniqueness of lifting, $\overline{\alpha * \beta} = \overline{\alpha} * \overline{\beta}$. Initial condition: $\overline{\phi}(\overline{x}, 0) = \overline{x}$ for any point $\overline{x} \in \overline{X}$. To prove Group property, define a map $H: I \times I \to X$ by

 $H(s,r) = \begin{cases} \phi(x, ((2-r)t + ru)s), & \text{for } s \le \frac{1}{2} \\ \phi(x, (rt + (2-r)u)s + (1-r)(t-u)), & \text{for } s \ge \frac{1}{2}. \end{cases}$

Then H is a continuous map. If $0 \le s \le \frac{1}{2}$, then $H(s,0) = \phi(x, 2st) = \alpha(2s)$ and if $\frac{1}{2} \le s \le 1$, then $H(s, o) = \phi(x, u(2s-1)+t) = \phi(\phi(x,t), (2s-1)u) = \beta(2s-1)$.

Therefore, we have $H(s,0) = \alpha * \beta(s)$, $H(s,1) = \phi(x,s(t+u)) = v(s)$, $H(0,r) = \phi(x,0) = x$, $H(1,r) = \phi(x,t+u)$. Hence, H is a path homopty between $\alpha * \beta$ and γ . By Lemma 54.2 [2], $\overline{\alpha * \beta}(1) = \overline{\gamma}(1)$.

Since $\overline{\alpha * \beta}(1) = \overline{\alpha} * \overline{\beta}(1) = \overline{\beta}(1) = \overline{\phi}(\overline{\phi}(\overline{x}, t), u)$ and $\overline{\gamma}(1) = \overline{\phi}(\overline{x}, t + u)$, we have $\overline{\phi}(\overline{\phi}(\overline{x}, t), u) = \overline{\phi}(\overline{x}, t + u)$.

Now we prove continuity of $\overline{\phi}$. Let $\overline{x} \in \overline{X}$. Put $M = \{t \in \mathbb{R} \mid \overline{\phi} \text{ is continuous at } (\overline{x}, t)\}$. We claim $M = \mathbb{R}$. To prove this fact, we use connectedness of \mathbb{R} .

First, to show that M is a nonempy set, let U be an elementry neighborhood of $x \equiv p(\overline{x})$. Then $P^{-1}(U) = \bigcup V_i$. Let $\overline{x} \in V_k$ and $q \equiv P \mid V_k :\to U$. For any neighborhood $W \subset V_k$ of \overline{x} , q(W) is a neighborhood of $x = \phi(x, 0)$.

From continuity of ϕ at (x, 0), there exist a neighborhood $B \subset U$ of x and $\delta > 0$ such that $\phi(B \times (-\delta, \delta)) \subset q(W)$. Also, since Pis continuous at \overline{x} , there a neighborhood $A \subset V_k$ of \overline{x} such that $P(U) \subset B$. Choose $\overline{y} \in A$ and $t \in (-\delta, \delta)$.

From $y \equiv P(\overline{y}) \in P(A) \subset B$, we obtain $\phi(\{y\} \times (-\delta, \delta)) \subset \phi(B \times (-\delta, \delta)) \subset q(W)$.

Define a map $\alpha : I \to q(W)$ by $\alpha(s) = \phi(y, st)$. Then α is a path in q(W) from y to $\phi(s, t)$. $\beta \equiv q^{-1} \circ \alpha : I \to W$ is a lifting of α beginning at \overline{y} . Then $\overline{\phi}(\overline{x},t) = \beta(1) \in W$. Hence, we have $\overline{\phi}(A \times (-\delta,\delta)) \subset W$. Since $\overline{\phi}$ is continuous at $(\overline{x},0)$, we have $0 \in M$.

To show openness of M, let $t \in M$. Let U be an elementary neighborhood of $\phi(x, t)$.

Then $P^{-1}(U) = \bigcup V_i$. Let $\overline{\phi}(\overline{x}, t) \in V_k$ and $q \equiv P \mid V_k : V_k \to U$.

Since $\overline{\phi}$ is continuous at (\overline{x}, t) , there is a neighborhood A of \overline{x} and $\delta > 0$ such that $\overline{\phi}(A \times (t - \delta, t + \delta)) \subset V_k$. Let $u \in (t - \delta, t + \delta)$.

Then, $\overline{\phi}(\overline{x}, u) \in \overline{\phi}(A \times (t - \delta, t + \delta)) \subset V_k$ For any neighborhood $W \subset V_k$ of $\overline{\phi}(\overline{x}, u)$, q(W) is a neighborhood of $\phi(x, u)$.

Since ϕ is continuous at (x, u), there exists a neighborhood B of xand $0 < \epsilon < min\{t+\delta-u, u-t+\delta\}$ such that $\phi(B \times (u-\epsilon, u+\epsilon)) \subset$ q(W). Also, since P is continuous at \overline{x} , there exists a neighborhood $D \subset A$ of \overline{x} such that $P(D) \subset B$.

Take $\overline{y} \in D$ and $v \in (u - \epsilon, u + \epsilon) \subset (t - \delta, t + \delta)$. Since $\overline{\phi}(\overline{y}, v) \in \overline{\phi}(A \times (t - \delta, t + \delta)) \subset V_k$ and $P(\overline{y}) \in P(D) \subset B$, we have $q(\overline{\phi}(\overline{y}, v)) = \phi(P(\overline{y}), v) \in \phi(B \times (u - \epsilon, u + \epsilon)) \subset q(W)$. Hence $\overline{\phi}(\overline{y}, v) \in q^{-1}(q(W)) = W$.

From $\overline{\phi}(D \times (u - \epsilon, u + \epsilon)) \subset W$, $\overline{\phi}$ is continuous at (\overline{x}, u) . Consequently, $u \in M$ and $(t - \delta, t + \delta) \subset M$, ending the proof of openness. Next we shall closedness of M. Take $t \in \overline{M}$.

Let U be an elementary neighborhood of $\phi(x, t)$.

Then $P^{-1}(U) = \bigcup V_i$. Let $\overline{\phi}(\overline{x}, t) \in V_k$ and $q \equiv P \mid V_k : V_k \to U$.

For any neighborhood $W \subset V_k$ of $\overline{\phi}(\overline{x}, u)$, q(W) is a neighborhood of $\phi(x, u)$.

Since ϕ is continuous at (x,t), there exist a neighborhood B of xand $\delta > 0$ such that $\phi(B \times (t-\delta, t+\delta)) \subset q(W)$. Also, $(t-\delta, t+\delta) \cap M \neq \emptyset$. Take $u \in (t-\delta, t+\delta) \cap M$. Define a map $\alpha : I \to q(W)$ by $\alpha(s) = \phi(\phi(x,t), s(u-t)) = \phi(x, (1-s)t + su)).$

Then α is a path in q(W) from $\phi(x,t)$ to $\phi(\phi(x,t), u-t)$. And

70

 $\beta \equiv q^{-1} \circ \alpha : I \to W$ is a lifting of α beginning at $\overline{\phi}(\overline{x}, t)$. Also, we have $\overline{\phi}(\overline{x}, u) = \overline{\phi}(\overline{\phi}(\overline{x}, t), u - t) = \beta(1) \in W$.

From continuty of P at \overline{x} and $\overline{\phi}$ at (\overline{x}, u) , there is a neighborhood A of \overline{x} such that $P(A) \subset B$ and $\overline{\phi}(A \times \{u\})) \subset W$. Take \overline{y} and $v \in (t - \delta, t + \delta)$. Since $\overline{\phi}(\overline{x}, u) \in \overline{\phi}(A \times \{u\}) \subset W$ and $y \equiv P(\overline{y}) \in P(A) \subset B$, we have $\phi(\{y\} \times (t - \delta, t + \delta)) \subset \phi(B \times (t - \delta, t + \delta)) \subset q(W)$.

Define a map $\alpha : I \to q(W)$ by $\alpha(s) = \phi(\phi(y, u), s(v - u)) = \phi(y, (1 - s)u + sv))$. Then α is a path in q(W) from $\phi(y, u)$ to $\phi(\phi(y, u), v - u)$.

And $\beta \equiv q^{-1} \circ \alpha : I \to W$ is a lifting of α beginning at $\overline{\phi}(\overline{y}, t)$. Also, we have $\overline{\phi}(\overline{y}, u) = \overline{\phi}(\overline{\phi}(\overline{y}, t), v - u) = \beta(1) \in W$.

From $\overline{\phi}(A \times (t - \delta, t + \delta)) \subset W$, $\overline{\phi}$ is continuous at (\overline{x}, t) . Hence $t \in M$, ending closedness. Since \mathbb{R} is connected, $M = \mathbb{R}$ by Theorem 1. Consequently, $\overline{\phi}$ is continuous.

References

- K. B. Lee and J. S. Park, Covering maps and semiflows, Far East J. Math. Sci 5 (1997), 41–47.
- J. R. Munkres, *Topology (Second edition)*, Prentice-Hall Inc. Englewood Cliffs, New Jesery (2000).
- 3. K. S. Sibirsky, *Introduction to topological dynamics*, Noordhoff International Publishing Leyden, The Netherlands (1975).

*

HEE SOON JUNG DEPARTMENT OF MATHEMATICS HOSEO UNIVERSITY ASAN-GUN, CHUNG-NAM, 337-850, KOREA *E-mail*: nkgoo@hanmail.net

**

Kyung Bok Lee Department of Mathematics

72 HEE SOON JUNG AND KYUNG BOK LEE

Hoseo University Asan-Gun, Chung-Nam, 337-850, Korea

E-mail: kblee@office.hoseo.ac.kr