JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 15, No. 2, December 2002

THE *n*-DIMENSIONAL SP_{α} AND M_{α} -INTEGRALS

JAE-MYUNG PARK

ABSTRACT. In this paper, we investigate the SP_{α} -integral and the M_{α} -integral defined on an interval of the *n*-dimensional Euclidean space \mathbb{R}^n . In particular, we show that these two integrals are equivalent.

In this paper, we introduce a Perron-type integral defined on an interval of the *n*-dimensional Euclidean space \mathbb{R}^n using the strong α -major and α -minor functions. We shall call it the SP_{α} -integral. We also define a McShane-type integral(M_{α} -integral) and show that the SP_{α} -integral is equivalent to the M_{α} -integral.

For a subset E of the *n*-dimensional Euclidean space \mathbb{R}^n , the Lebesgue measure of E is denoted by |E|. For a point $x = (x_1, x_2, \cdots, x_n) \in \mathbb{R}^n$, the norm of x is $||x|| = \max_{1 \le i \le n} |x_i|$ and the δ -neighborhood $U(x, \delta)$ of x is an open cube centered at x with sides equal to 2δ .

For an interval $I = [a_1, b_1] \times [a_2, b_2] \times \cdots [a_n, b_n]$ of \mathbb{R}^n with $a_i < b_i$ for $i = 1, 2, \cdots, n$, we call the number $r(I) = \min_i(b_i - a_i) / \max_i(b_i - a_i)$ the regularity of I. If $r(I) > \alpha(\alpha \in (0, 1))$, then the interval I is said to be α -regular.

Throughout this paper, I_0 denotes a fixed interval in \mathbb{R}^n and \mathcal{I} the family of all subintervals of I_0 . A positive function δ defined on a set $E \subset I_0$ is called a *gauge* on E. By \mathcal{F} we denote the free full interval basis $\mathcal{F} = \{(I, x) : I \in \mathcal{I}, x \in I_0\}$. Note that for each pair $(I, x) \in \mathcal{F}$

Received by the editors on November 2, 2002.

²⁰⁰⁰ Mathematics Subject Classifications: 26A39, 26A42.

Key words and phrases: strong α -regular derivative, strong α -major function, strong α -minor function, SP_{α} -integral, M_{α} -integral.

J.M. PARK

the point x need not belong to its interval I. For a given gauge δ and a given $\alpha \in (0, 1)$, we write

$$\begin{split} \mathcal{F}^{\alpha} &= \{(I,x) \in \mathcal{F} : r(I) > \alpha\}, \\ \mathcal{F}^{\alpha}_{\delta} &= \{(I,x) \in \mathcal{F} : r(I) > \alpha, I \subset U(x,\delta(x))\}. \end{split}$$

For a set $E \subset I_0$, we write

$$\mathcal{F}(E) = \{ (I, x) \in \mathcal{F} : I \subset E \},\$$
$$\mathcal{F}[E] = \{ (I, x) \in \mathcal{F} : x \in E \}.$$

A finite subset π of \mathcal{F} is a \mathcal{F} -partition of I_0 if for distinct pairs (I_1, x_1) and (I_2, x_2) in π , I_1 and I_2 are nonoverlapping and $\cup_{(I,x)\in\pi}I = I_0$.

To define the SP_{α} -integral, we introduce first the definitions of the strong α -regular lower and upper derivates.

DEFINITION 1. Let F be an interval function and let $x \in I_0$. The strong α -regular lower and upper derivates of F at x are defined by

$$\underline{SD}_{\alpha}F(x) = \sup_{\delta} \inf\left\{\frac{F(I)}{|I|} : (I,x) \in \mathcal{F}_{\delta}^{\alpha}[\{x\}]\right\},\$$
$$\overline{SD}_{\alpha}F(x) = \inf_{\delta} \sup\left\{\frac{F(I)}{|I|} : (I,x) \in \mathcal{F}_{\delta}^{\alpha}[\{x\}]\right\}.$$

The function F is strongly α -regularly differentiable at x if

$$\underline{SD}_{\alpha}F(x) = \overline{SD}_{\alpha}F(x) \neq \pm \infty.$$

This common value is the strong α -regular derivative of F at x and is denoted by $SD_{\alpha}F(x)$.

It is easy to see that for any $0 < \alpha < \beta < 1$ and for any $x \in I_0$ we have

$$\underline{SD}_{\alpha}F(x) \leq \underline{SD}_{\beta}F(x) \leq \overline{SD}_{\beta}F(x) \leq \overline{SD}_{\alpha}F(x).$$

42

DEFINITION 2. Let f be a point function on I_0 .

(a) An interval function M is a strong α -major function of f on I_0 if it is superadditive and $\underline{SD}_{\alpha}M(x) \ge f(x)$ for all $x \in I_0$.

(b) An interval function m is a strong α -minor function of f on I_0 if it is subadditive and $\overline{SD}_{\alpha}m(x) \leq f(x)$ for all $x \in I_0$.

DEFINITION 3. A function $f: I_0 \to \mathbb{R}$ is SP_{α} -integrable on I_0 if $-\infty < \sup\{m(I_0)\} = \inf\{M(I_0)\} < \infty$,

where the supremum is taken over all strong α -minor functions of f and the infimum is taken over all strong α -major functions of f. This common value is the SP_{α} -integral of f on I_0 and is denoted by $(SP_{\alpha}) \int_{I_0} f$.

The following theorem is an immediate consequence of the definition.

THEOREM 4. A function $f: I_0 \to \mathbb{R}$ is SP_{α} -integrable on I_0 if and only if for each $\epsilon > 0$ there exist a strong α -major function M and a strong α -minor function m on I_0 such that $M(I_0) - m(I_0) < \epsilon$.

DEFINITION 5. Let $\alpha \in (0, 1)$. A function f on I_0 is M_{α} -integrable on I_0 with integral A if for each $\epsilon > 0$ there exists a gauge δ such that

$$\left|\sum_{(I,x)\in\pi}f(x)|I|-A\right|<\epsilon$$

for every $\mathcal{F}^{\alpha}_{\delta}$ -partition π of I_0 . We write $A = (M_{\alpha}) \int_{I_0} f$.

THEOREM 6. Let $\alpha \in (0, 1)$. If a function f is SP_{α} -integrable on I_0 , then f is M_{α} -integrable on I_0 and the integrals are equal.

Proof. Suppose that f is SP_{α} -integrable on I_0 and let $\epsilon > 0$. Then there exist a strong α -major function M and a strong α -minor function m of f on I_0 such that

$$-\epsilon < m(I_0) - (SP_\alpha) \int_{I_0} f \le 0 \le M(I_0) - (SP_\alpha) \int_{I_0} f < \epsilon.$$

J.M. PARK

Since $\overline{SD}_{\alpha}m \leq f \leq \underline{SD}_{\alpha}M$ on I_0 , for each $x \in I_0$ there exists $\delta(x) > 0$ such that

$$\frac{M(I)}{|I|} \ge f(x) - \epsilon$$
 and $\frac{m(I)}{|I|} \le f(x) + \epsilon$

whenever $(I, x) \in \mathcal{F}^{\alpha}_{\delta}[\{x\}].$

If $\pi = \{(I_i, x_i) : 1 \le i \le n\}$ is any $\mathcal{F}^{\alpha}_{\delta}$ -partition of I_0 , then we have

$$\sum_{i=1}^{n} f(x_i) |I_i| - (SP_{\alpha}) \int_{I_0} f$$

$$\leq \sum_{i=1}^{n} [f(x_i)|I_i| - M(I_i)] + M(I_0) - (SP_{\alpha}) \int_{I_0} f$$

$$< \epsilon \sum_{i=1}^{n} |I_i| + \epsilon = \epsilon (|I_0| + 1).$$

Similarly, using the minor function m

$$\sum_{i=1}^{n} f(x_i)|I_i| - (SP_{\alpha}) \int_{I_0} f > -\epsilon(|I_0| + 1).$$

It follows that f is M_{α} -integrable on I_0 and

$$(M_{\alpha})\int_{I_0} f = (SP_{\alpha})\int_{I_0} f.$$

THEOREM 7. Let $\alpha \in (0,1)$. If f is M_{α} -integrable on I_0 , then f is SP_{α} -integrable on I_0 .

Proof. Suppose that f is M_{α} -integrable on I_0 and let $\epsilon > 0$. Then there exists a gauge δ on I_0 such that

$$\left|\sum_{(I,x)\in\pi} f(x)|I| - (M_{\alpha})\int_{I_0} f\right| < \epsilon$$

44

for every $\mathcal{F}^{\alpha}_{\delta}$ -partition π of I_0 . For each interval I, let

$$M(I) = \sup \left\{ \sum_{(J,x)\in\pi} f(x)|J| : \pi \subset \mathcal{F}^{\alpha}_{\delta}(I) \right\},$$
$$m(I) = \inf \left\{ \sum_{(J,x)\in\pi} f(x)|J| : \pi \subset \mathcal{F}^{\alpha}_{\delta}(I) \right\}.$$

Then it is easy to show that M is superadditive and m is subadditive. Fix a point $x \in I_0$. For each $(I, x) \in \mathcal{F}^{\alpha}_{\delta}[\{x\}]$, we have $M(I) \geq f(x)|I|$ and $\frac{M(I)}{|I|} \geq f(x)$. It follows that $\underline{SD}_{\alpha}M(x) \geq f(x)$. Similarly, $\overline{SD}_{\alpha}m(x) \leq f(x)$. Hence M is a strong α -major function of f on I_0 and m is a strong α -minor function of f on I_0 .

Since

$$\left|\sum_{(I,x)\in\pi_1} f(x)|I| - \sum_{(J,y)\in\pi_2} f(y)|J|\right| < 2\epsilon$$

for any two $\mathcal{F}^{\alpha}_{\delta}$ -partition π_1 and π_2 of I_0 , we have $M(I_0) - m(I_0) \leq 2\epsilon$. By Theorem 4, f is SP_{α} -integrable on I_0 .

References

- B. Bongiorno, L.Di Piazza and V. Skvortsov, On continuous major and minor functions for the n-dimensional Perron integral, Real Anal. Exch. 22 (1) (1996/1997), 318–327.
- On the n-dimensional Perron integral defined by ordinary derivatives, Real Anal. Exch. 26 (1) (2000/2001), 371–380.
- D.H. Fremlin and J. Mendoza, On the integration of vector-valued functions, Illinois J. Math. 38 (1994), 127–147.
- R.A. Gordon, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990), 557–567.
- The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., 1994.
- J. Kurzweil and J. Jarnik, Equivalent definitions of regular generalized Perron integral, Czechoslovak Math. J. 42 (1992), 365–378.
- 7. _____, Differentiability and integrability in n dimensions with respect to α -regular intervals, Results Math. **21 (1-2)** (1992), 138–151.
- M.P. Navarro and V.A. Skvortsov, On n-dimensional Perron integral, Southeast Asian Math. Bull. 20 (2) (1997), 111–116.

J.M. PARK

- 9. K.M. Ostaszewski, *Henstock Integration in the Plane*, Memoirs Amer. Math. Soc., Providence, 353, 1986.
- 10. Jae Myung Park, The Denjoy extension of the Riemann and McShane integrals, Czechoslovak Math. J. 50 (125) (2000), 615–625.
- 11. S. Saks, Theory of the Integral, Dover, New York, 1964.
- V.A. Skvortsov, Continuity of δ-variation and construction of continuous major and minor functions for the Perron integral, Real Anal. Exch. 21 (1) (1995/1996), 270–277.

DEPARTMENT OF MATHEMATICS, CHUNGNAM NATIONAL UNIVERSITY, DAEJEON 305-764, SOUTH KOREA

E-mail: jmpark@math.cnu.ac.kr