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THE n–DIMENSIONAL SPα AND Mα–INTEGRALS

Jae-Myung Park

Abstract. In this paper, we investigate the SPα-integral and the

Mα-integral defined on an interval of the n-dimensional Euclidean

space R
n. In particular, we show that these two integrals are equiv-

alent.

In this paper, we introduce a Perron-type integral defined on an

interval of the n-dimensional Euclidean space R
n using the strong α-

major and α-minor functions. We shall call it the SPα-integral. We

also define a McShane-type integral(Mα-integral) and show that the

SPα-integral is equivalent to the Mα-integral.

For a subset E of the n-dimensional Euclidean space R
n, the Lebes-

gue measure of E is denoted by |E|. For a point x = (x1, x2, · · · , xn) ∈

R
n, the norm of x is ‖x‖ = max1≤i≤n |xi| and the δ-neighborhood

U(x, δ) of x is an open cube centered at x with sides equal to 2δ.

For an interval I = [a1, b1]× [a2, b2]×· · · [an, bn] of R
n with ai < bi

for i = 1, 2, · · · , n, we call the number r(I) = mini(bi−ai)/maxi(bi −

ai) the regularity of I. If r(I) > α(α ∈ (0, 1)), then the interval I is

said to be α-regular.

Throughout this paper, I0 denotes a fixed interval in R
n and I the

family of all subintervals of I0. A positive function δ defined on a set

E ⊂ I0 is called a gauge on E. By F we denote the free full interval

basis F = {(I, x) : I ∈ I, x ∈ I0}. Note that for each pair (I, x) ∈ F
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the point x need not belong to its interval I. For a given gauge δ and

a given α ∈ (0, 1), we write

Fα = {(I, x) ∈ F : r(I) > α},

Fα
δ = {(I, x) ∈ F : r(I) > α, I ⊂ U(x, δ(x))}.

For a set E ⊂ I0, we write

F(E) = {(I, x) ∈ F : I ⊂ E},

F [E] = {(I, x) ∈ F : x ∈ E}.

A finite subset π of F is a F-partition of I0 if for distinct pairs

(I1, x1) and (I2, x2) in π, I1 and I2 are nonoverlapping and ∪(I,x)∈πI =

I0.

To define the SPα-integral, we introduce first the definitions of the

strong α-regular lower and upper derivates.

Definition 1. Let F be an interval function and let x ∈ I0. The

strong α-regular lower and upper derivates of F at x are defined by

SDαF (x) = sup
δ

inf

{

F (I)

|I|
: (I, x) ∈ Fα

δ [{x}]

}

,

SDαF (x) = inf
δ

sup

{

F (I)

|I|
: (I, x) ∈ Fα

δ [{x}]

}

.

The function F is strongly α-regularly differentiable at x if

SDαF (x) = SDαF (x) 6= ±∞.

This common value is the strong α-regular derivative of F at x and is

denoted by SDαF (x).

It is easy to see that for any 0 < α < β < 1 and for any x ∈ I0 we

have

SDαF (x) ≤ SDβF (x) ≤ SDβF (x) ≤ SDαF (x).



THE n–DIMENSIONAL SPα AND Mα–INTEGRALS 43

Definition 2. Let f be a point function on I0.

(a) An interval function M is a strong α-major function of f on I0

if it is superadditive and SDαM(x) ≥ f(x) for all x ∈ I0.

(b) An interval function m is a strong α-minor function of f on I0

if it is subadditive and SDαm(x) ≤ f(x) for all x ∈ I0.

Definition 3. A function f : I0 → R is SPα-integrable on I0 if

−∞ < sup{m(I0)} = inf{M(I0)} < ∞,

where the supremum is taken over all strong α-minor functions of

f and the infimum is taken over all strong α-major functions of f .

This common value is the SPα-integral of f on I0 and is denoted by

(SPα)
∫

I0

f .

The following theorem is an immediate consequence of the defini-

tion.

Theorem 4. A function f : I0 → R is SPα-integrable on I0 if and

only if for each ǫ > 0 there exist a strong α-major function M and a

strong α-minor function m on I0 such that M(I0) − m(I0) < ǫ.

Definition 5. Let α ∈ (0, 1). A function f on I0 is Mα-integrable

on I0 with integral A if for each ǫ > 0 there exists a gauge δ such that
∣

∣

∣

∣

∑

(I,x)∈π

f(x)|I| −A

∣

∣

∣

∣

< ǫ

for every Fα
δ -partition π of I0. We write A = (Mα)

∫

I0

f .

Theorem 6. Let α ∈ (0, 1). If a function f is SPα-integrable on

I0, then f is Mα-integrable on I0 and the integrals are equal.

Proof. Suppose that f is SPα-integrable on I0 and let ǫ > 0. Then

there exist a strong α-major function M and a strong α-minor func-

tion m of f on I0 such that

−ǫ < m(I0) − (SPα)

∫

I0

f ≤ 0 ≤ M(I0) − (SPα)

∫

I0

f < ǫ.
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Since SDαm ≤ f ≤ SDαM on I0, for each x ∈ I0 there exists δ(x) > 0

such that

M(I)

|I|
≥ f(x) − ǫ and

m(I)

|I|
≤ f(x) + ǫ

whenever (I, x) ∈ Fα
δ [{x}].

If π = {(Ii, xi) : 1 ≤ i ≤ n} is any Fα
δ -partition of I0, then we have

n
∑

i=1

f(xi)|Ii| − (SPα)

∫

I0

f

≤
n

∑

i=1

[f(xi)|Ii| − M(Ii)] + M(I0) − (SPα)

∫

I0

f

< ǫ
n

∑

i=1

|Ii| + ǫ = ǫ(|I0| + 1).

Similarly, using the minor function m

n
∑

i=1

f(xi)|Ii| − (SPα)

∫

I0

f > −ǫ(|I0| + 1).

It follows that f is Mα-integrable on I0 and

(Mα)

∫

I0

f = (SPα)

∫

I0

f.

�

Theorem 7. Let α ∈ (0, 1). If f is Mα-integrable on I0, then f is

SPα-integrable on I0.

Proof. Suppose that f is Mα-integrable on I0 and let ǫ > 0. Then

there exists a gauge δ on I0 such that

∣

∣

∣

∣

∑

(I,x)∈π

f(x)|I| − (Mα)

∫

I0

f

∣

∣

∣

∣

< ǫ
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for every Fα
δ -partition π of I0. For each interval I, let

M(I) = sup

{

∑

(J,x)∈π

f(x)|J | : π ⊂ Fα
δ (I)

}

,

m(I) = inf

{

∑

(J,x)∈π

f(x)|J | : π ⊂ Fα
δ (I)

}

.

Then it is easy to show that M is superadditive and m is subadditive.

Fix a point x ∈ I0. For each (I, x) ∈ Fα
δ [{x}], we have M(I) ≥

f(x)|I| and
M(I)
|I| ≥ f(x). It follows that SDαM(x) ≥ f(x). Similarly,

SDαm(x) ≤ f(x). Hence M is a strong α-major function of f on I0

and m is a strong α-minor function of f on I0.

Since
∣

∣

∣

∣

∑

(I,x)∈π1

f(x)|I| −
∑

(J,y)∈π2

f(y)|J |

∣

∣

∣

∣

< 2ǫ

for any two Fα
δ -partition π1 and π2 of I0, we have M(I0)−m(I0) ≤ 2ǫ.

By Theorem 4, f is SPα-integrable on I0. �
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