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FREE PROBABILITY THEORY

AND ITS APPLICATION

Jaeseong Heo

Abstract. We prove a simplicity of the C∗-algebra generated by

some C∗-subalgebra and a Haar unitary in a free product of finite

von Neumann algebras. Some examples and questions are given.

1. Introduction and Preliminaries

The study of the free probability theory has seen rapid and impres-

sive progress since it was introduced by Voiculescu in the framework

of operator algebras. This free probability theory has turned out to be

very powerful in the study of von Neumann algebras associated with

free products of discrete groups, in particular, of free group factors.

In the non-commutative probability theory there is a notion of the

free product of finite von Neumann algebras with specified traces, for

which one has L(G1) ∗ L(G2) ≃ L(G1 ∗ G2) where L(G) is the finite

von Neumann algebra associated to a discrete group G. In particular,

the reduced free product of C∗-algebras is closely related to the free

product of groups via the reduced group C∗-algebra. The notion of

freeness in operator algebras can be viewed as an abstract extension

of freeness in groups.

There are many questions about (reduced) free products. One of

most basic questions concerns simplicity of free product C∗-algebras
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or C∗-subalgebras of free product von Neumann algebras. In 1975,

Powers [9] showed that the reduced group C∗-algebra C∗
r (G) is simple

and has a unique trace when G is the free group F2 on two genera-

tors. This example of the simple C∗-algebra intrigued the further

deep structure theory for C∗-algebras and notably K-theory for C∗-

algebras. Furthermore, his method turned out to be a prototype for

inferring the simplicity of C∗-algebras. See the survey [3] for a detail

discussion, some properties of operator algebras associated to the free

groups and related “geometric” groups giving rise to algebras with

similar properties.

Avitzour [1] introduced a free product of C∗-algebras with faithful

states and generalized Powers’ result to free products of C∗-algebras.

A necessary and sufficient condition for the simplicity of the reduced

free product of finite-dimensional abelian C∗-algebras is given by

Dykema [4]. In Voiculescu’s free probability theory, basic objects

inherits the asymptotic properties of families of random matrices and

are isomorphic to the free group factors. Furthermore, Voiculescu in-

troduced the definition of the free entropy of an n-tuple of self-adjoint

elements in a tracial W ∗-probability space. See [10] and its references

for some new development on free group factors.

In this paper, we concern with the simplicity and primality of (re-

duced) free products. First, we show the simplicity of the C∗-algebra

generated by some C∗-subalgebra and a Haar unitary in a free prod-

uct of finite von Neumann algebras and the uniqueness of a trace.

This result has already been proved by Dykema [4], but we are show-

ing by the different method extending directly the Powers’ technique.

We give some example and questions concerning primality, especially,

free group factors in the last section.

The remainder of this section is concerned with definitions of free
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products of von Neumann algebras and reduced free products of C∗-

algebras. Let A be a unital algebra with a linear functional φ : A → C

such that φ(1) = 1. A family (Ai)i∈I of unital subalgebras in A is

called free with respect to φ if

φ(a1a2 · · · an) = 0

whenever aj ∈ Aij
, ij 6= ij+1 and φ(aj) = 0 for all j. This freeness

is conceptually analogous to independence in the classical probability

theory, though completely noncommutative. See the monograph [10]

for a good introduction, more details on free products and various

applications related to free group factors.

We first recall some basic facts about free products of finite von

Neumann algebras. Suppose that M1 and M2 are finite von Neu-

mann algebras with a faithful normal normalized states φ1 and φ2,

respectively.

From the GNS construction, we can get representations (H1, π1, ξ1)

and (H2, π2, ξ2). We can identify πi(Mi) with Mi (i = 1, 2) because

of the faithfulness and normality of states. We will also identify ξ

with ξ1 and ξ2 which we assume to be unit vectors.

Then the free product of Hilbert spaces H1 and H2 (with respect

to a distinguished unit vector ξ) is the Hilbert space H given by

H = Cξ ⊕
⊕

n≥1





⊕

(i1 6=i2 6=···6=in)

H◦
i1
⊗H◦

i2
⊗ · · ·H◦

i1



 ,

where H◦
ij

is the orthogonal complement of ξij
in Hij

for ij = 1, 2.

Note that B(H1) and B(H2) act naturally on H from the left when we

identify H with Hi⊗Ki where Ki are those tensors in H not beginning

in H◦
i (i = 1, 2). Especially, we have the embeddings σi : Mi →֒ B(Hi)

(i = 1, 2). Then the free product (M1 ∗ M2, φ) of M1 and M2 (with
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respect to φ1 and φ2) is the von Neumann algebra on H generated by

σ1(M1) and σ2(M2) where φ is the vector state induced by ξ, that is,

φ = φ1 ∗ φ2 = 〈·ξ, ξ〉. M1 and M2 are free with respect to φ in the

following sense for xj ∈ M1 and yj ∈ M2, φ(x1y1 · · ·xnyn) = 0 when

φ(xj) = φ(yj) = 0 for all j.

The reduced free product of C∗-algebras can be constructed as

follows [14]: Let A1 and A2 be unital C∗-algebras with states φ1 and

φ2 whose associated GNS representations are faithful. The reduced

free product of (A1, φ1) and (A2, φ2) is the unital C∗-algebra (A, φ)

with unital embeddings Ai →֒ A such that

(i) the GNS representation associated with φ is faithful on A;

(ii) φ|Ai
= φi;

(iii) A1 and A2 are free with respect to φ;

(iv) A is generated by A1 and A2.

We introduced the definition of the reduced free product algebra.

There is also full free product algebra. However, we mainly deal with

the reduced free product algebra.

2. Simplicity of C∗-subalgebras in a von Neumann algebra

free product

Throughout this section, Mj denotes a finite von Neumann alge-

bra with a faithful finite normal trace τj (j = 1, 2), unless specified

otherwise. The algebraic free product M1 ∗a M2 of M1 and M2 is

embedded into M1 ∗ M2. We identify M1 and M2 with π1(M1) and

π2(M2), respectively. Then all finite linear combinations of the iden-

tity element I and elements of the form x1x2 · · ·xn (n ≥ 1) form

an ultraweakly dense ∗-subalgebra of M1 ∗ M2 where xj ∈ Mij
and

τij
(xj) = 0 with ij = 1, 2 and ij 6= ij+1.

Given a finite von Neumann algebra (M, τ ) with a trace, a Haar
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unitary (with respect to a trace τ ) is a unitary, u ∈ M, such that

τ (un) = 0 for every non-zero integer n. This is equivalent to τ of the

spectral measure of u being Haar measure on the unit circle.

Let A be a unital norm separable C∗-subalgebra of M1 which is

ultraweakly dense in M1 and contains a Haar unitary u. Let v be a

Haar unitary in M2 and A the C∗-subalgebra in M1∗M2 generated by

A and v. We denote still by τ the restriction of the trace on M1 ∗M2

to A. We define sets Fi (i = 1, 2) as follows:

F1 = {vn0a1v
n1 · · · akvnk : aj ∈ A with τ1(aj) = 0, k ≥ 1 and

nj 6= 0(1 ≤ j ≤ k − 1)}, F2 = {vn : n ∈ Z \ {0}}.
Note that n0 and nk may be zero. Let F0 = F1 ∪ F2 and F =

F0 ∪ {I}.
All finite linear combinations of elements in F , denoted by CF ,

form a norm dense ∗-subalgebra of A. The length of an element in F
is defined as follows:

the length of vn0a1v
n1 · · · akvnk is |n0|+ · · · + |nk| and the length

of I is 0.

The following lemma is well-known, so that we will omit the proof.

Lemma 2.1. Let x1, · · · , xk be a finite sequence of operators on

a Hilbert space such that image subspaces Im(x1), · · · , Im(xk) are

pairwise orthogonal. Then we have

‖x1 + · · · + xk‖ ≤
√

k max
1≤j≤k

‖xj‖.

The following proposition which extends Powers’ result to a free

product of finite von Neumann algebras are the same as that of

Dykema [4], but we will give a proof by a direct variation on Powers’

proof for the reduced C∗-algebra of non-abelian free groups.
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Theorem 2.2. A is simple and has a unique trace.

Proof. Suppose that J is a non-zero two-sided ideal in A. We can

choose a non-zero positive element x in J with τ (x) 6= 0. Multiplying

x by some constant λ ∈ C, we may assume that τ (x) = 1. From the

Kaplansky’s density theorem, we know that for any ǫ > 0 there is a

self-adjoint element y in CF such that ‖x − y‖ < ǫ and ‖y‖ ≤ ‖x‖.
Moreover, we may assume that τ (y) = 1. Thus we can write y =

I +
∑n

j=1 λjyj where λj ∈ C and yj ∈ F0 for j = 1, · · · , n since traces

of all elements in F0 are zero.

Let m0 − 1 be the maximal length of y1, · · · , yn, that is,

m0 − 1 = max{|yj | : 1 ≤ j ≤ n}.

Then the elements v−m0yjv
m0 begin and end with a nonzero power

of v for all j = 1, · · · , n. Let C be the set of elements in F0 which

begins by vm0 (followed by a non-trivial element in A, or by nothing

at all) and set D = F −C. Then we see that C and D are orthogonal.

From above argument, we also see that yjC and C are orthogonal

for j = 1, · · · , n. Since D = F − C, one can see that uiv−m0D and

ujv−m0D are orthogonal whenever i 6= j. We know that L2(A, τ ) =

L2(M1 ∗ {v}′′, τ ) since A is ultraweakly dense in M1.

Let K be the closed subspace spanned by D and P the projection

from L2(A, τ ) onto K. For each positive integer j, we set wj = ujv−m0

and Qj = wjPw−1
j . Since wiD and wjD are orthogonal for i 6= j, we

see that Q1, Q2, · · · are pairwise orthogonal projections. yjC and C
are also orthogonal, so that one has

(I − P )yj(I − P ) = 0 for j = 1, 2, · · · , n.

From the definition of each Qj , we get I − P = w−1
j (I − Qj)wj .

Since (I − P )yj(I − P ) = 0 for each 1 ≤ j ≤ n, we have (I −
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P )(
∑n

j=1 λjyj)(I − P ) = 0, so that

0 = (I − Qj)wj

(

n
∑

j=1

λjyj

)

w−1
j (I − Qj).

Now we show that for each integer k ≥ 1, one has
∥

∥

∥

∥

∥

∥

1

k

k
∑

j=1

wj

(

n
∑

i=1

λiyi

)

w−1
j

∥

∥

∥

∥

∥

∥

≤ 2√
k

∥

∥

∥

∥

∥

n
∑

i=1

λiyi

∥

∥

∥

∥

∥

.

For any unit vector ξ ∈ L2(A, τ ), we have that
∣

∣

∣

∣

∣

∣

〈

1

k

k
∑

j=1

wj

(

n
∑

i=1

λiyi

)

w−1
j ξ, ξ

〉

∣

∣

∣

∣

∣

∣

≤ 1

k

k
∑

j=1

∣

∣

∣

∣

∣

〈

wj

(

n
∑

i=1

λiyi

)

w−1
j ξ, ξ

〉∣

∣

∣

∣

∣

=
1

k

k
∑

j=1

∣

∣

∣

∣

∣

〈

(I − Qj + Qj)wj

(

n
∑

i=1

λiyi

)

w−1
j (I − Qj + Qj)ξ, ξ

〉∣

∣

∣

∣

∣

≤ 1

k

k
∑

j=1

{∣

∣

∣

∣

∣

〈

(I − Qj)wj

(

n
∑

i=1

λiyi

)

w−1
j (I − Qj)ξ, ξ

〉∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

〈

(I − Qj)wj

(

n
∑

i=1

λiyi

)

w−1
j Qjξ, ξ

〉∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

〈

Qjwj

(

n
∑

i=1

λiyi

)

w−1
j ξ, ξ

〉∣

∣

∣

∣

∣

}

≤ 1

k

k
∑

j=1

{∥

∥

∥

∥

∥

(I − Qj)wj

(

n
∑

i=1

λiyi

)

w−1
j

∥

∥

∥

∥

∥

‖Qjξ‖

+

∥

∥

∥

∥

∥

wj

(

n
∑

i=1

λiyi

)

w−1
j

∥

∥

∥

∥

∥

‖Qjξ‖
}

≤ 1

k

k
∑

j=1

∥

∥

∥

∥

∥

n
∑

i=1

λiyi

∥

∥

∥

∥

∥

(‖Qjξ‖ + ‖Qjξ‖)

≤ 2√
k

∥

∥

∥

∥

∥

n
∑

i=1

λiyi

∥

∥

∥

∥

∥

.
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Since y is a self-adjoint element, y−I =
∑n

i=1 λiyi is also self-adjoint.

Hence we have the inequality
∥

∥

∥

∥

∥

∥

1

k

k
∑

j=1

wj

(

n
∑

i=1

λiyi

)

w−1
j

∥

∥

∥

∥

∥

∥

≤ 2√
k

∥

∥

∥

∥

∥

n
∑

i=1

λiyi

∥

∥

∥

∥

∥

.

Next we prove that
∥

∥

∥

∥

∥

∥

I − 1

k

k
∑

j=1

wjxw−1
j

∥

∥

∥

∥

∥

∥

≤ 2√
k
‖x‖ + ǫ

for each integer k ≥ 1. Using the triangle inequality, we have
∥

∥

∥

∥

∥

∥

I − 1

k

k
∑

j=1

wjxw−1
j

∥

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

∥

I − 1

k

k
∑

j=1

wjyw−1
j

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∥

1

k

k
∑

j=1

wjyw−1
j − 1

k

k
∑

j=1

wjxw−1
j

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

1

k

k
∑

j=1

wj

(

n
∑

i=1

λiyi

)

w−1
j

∥

∥

∥

∥

∥

∥

+ ‖y − x‖

≤ 2√
k

∥

∥

∥

∥

∥

n
∑

i=1

λiyi

∥

∥

∥

∥

∥

+ ǫ

≤ 2√
k
‖x‖ + ǫ.

For sufficiently large k, we get the inequality
∥

∥

∥

∥

∥

∥

I − 1

k

k
∑

j=1

wjxw−1
j

∥

∥

∥

∥

∥

∥

< 1.

It follows that b = 1
k

∑k

j=1 wjxw−1
j is invertible. Since x ∈ J and J is

a two-sided ideal, b lies in J. This implies that the identity element I

lies in J, so that J = A. Therefore, A is simple.
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To show that A has a unique trace, let τ ′ be any normalized trace

on A. Suppose that x ∈ A and ǫ > 0 is given. Then it follows from

above proof that there are unitaries wj ∈ F and λj ∈ C (j = 1, · · · , n)

with
∑

j λj = 1 such that

∥

∥

∥

∥

∥

∥

τ (x)I −
n

∑

j=1

λjwjxw∗
j

∥

∥

∥

∥

∥

∥

< ǫ.

Hence, we have

|τ ′(τ (x)I −
n

∑

j=1

λjwjxw∗
j )| = |τ (x) −

n
∑

j=1

λjτ
′(wjxw∗

j )|

= |τ (x) − τ ′(x)| < ǫ.

Since ǫ > 0 is arbitrary, we have τ (x) = τ ′(x) for all x ∈ A. Hence A

has a unique trace. �

3 Some remarks and questions

Ge [6] asked a question suggested by the primality of free group fac-

tors: Is the relative commutant of a non-atomic injective (or abelian)

von Neumann subalgebra of L(Fn) in L(Fn) always injective? We can

ask the similar question for free product II1-factors, that is, for any

non-atomic injective subalgebra B of a free product II1-factor M, is

the relative commutant of B in M always injective? Here we would

like to answer this question in the negative. A counterexample is di-

rectly obtained from Theorem 5.2 in [5]. For the convenience of a

reader, we will give the example.

Example 3.1. Suppose that the group G is the direct product of an

i.c.c. amenable countable discrete group H with a countable discrete

group G1. Then L(H) is the hyperfinite II1-factor and we denote
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it by R2 which is generated by two unitary generators U2, V2 with

the relation U2V2 = e2πiθ′

V2U2. Let M1 = R1 ∗ L(G) where R1 is

generated by unitary generators U1, V1 with U1V1 = e2πiθV1U1. If we

choose θ′ such that 2θ′ = θ, then the mapping α given by α(U1) = U2

and α(V1) = V 2
2 determines an isomorphism of R1 into R2. Let

N = M2(C)⊗M1 and let R be the subalgebra of N consisting of all

elements

(

x 0
0 α(x)

)

for x ∈ R1. We denote by M the free product

of N and N1 where N1 is any type II1-factor. By Corollary 4.2, we

have that R′∩M is contained in N , so that R′∩M = R′ ∩N . From

Theorem 5.2 in [5], we obtain that the relative commutant of R in M
is not injective if G1 is not amenable.

We showed that if G is a discrete i.c.c group with property T of

Kazhdan, L(G) is not isomorphic to N ⊗ L(F2) for some factor N
of type II1 [7]. We ask if the factor with property T is prime. Al-

though we have seen that free products (representing “freeness”) are

quite different from tensor products (representing “independence”),

we strongly suspect that all free product II1-factors are prime. It is

proved in [6] that L(F2) is prime using Voiculescu’s free entropy the-

ory, but we don’t know if L(F2) ⊗ L(F2) is ∗-isomorphic to L(F2) ⊗
L(F2) ⊗ L(F2). Hence we ask the following question:

Question 3.2. Is Aut(L(F2)⊗ L(F2)) (resp., Out(L(F2)⊗ L(F2))F)

isomorphic to Aut(L(F2)⊗L(F2)⊗L(F2)) (resp., Out(L(F2)⊗L(F2)⊗
L(F2)))?

In connection with Question 3.2, it may make sense to ask if

Aut(L(F2)) (resp., Out(L(F2))) is isomorphic to Aut(L(F2)⊗L(F2))

(resp., Out(L(F2) ⊗ L(F2))).

Remark 3.3 Kadison first noticed that the interchange of two free

generators of F2 induces an outer automorphism of L(F2). Hence
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permutations on the n generators induce automorphisms of L(Fn),

which give rise to actions of the permutation group Sn on L(Fn). Since

each generator of the free group corresponds to a unitary operator that

generates a non-atomic abelian subalgebra of L(Fn), from Lemma 3.5

in [7] we obtain that this action is outer in the sense that Sn embeds

into Out(L(Fn)) faithfully. Automorphisms and their outer conjugacy

classes of the factor L(F∞) have been studied by J. Phillips. We hope

that further studies on automorphisms of free group factors L(Fn)

may lead us to understand more connections among free group factors

L(Fn) for n = 2, 3, . . . ,∞.
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