# GENERALIZED ANTI-DERIVATIONS ON BANACH ALGEBRAS 

Chun-Gil Park*


#### Abstract

We investigate generalized Baxter equations on Banach algebras. This is applied to understand generalized anti-derivations on Banach *-algebras.


## 1. Introduction

Let $E_{1}$ and $E_{2}$ be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $h: E_{1} \rightarrow E_{2}$ to be a mapping such that $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|h(x+y)-h(x)-h(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in E_{1}$. Th.M. Rassias [2] showed that there exists a unique $\mathbb{R}$-linear mapping $T: E_{1} \rightarrow E_{2}$ such that

$$
\|h(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in E_{1}$.
Sablik [3] investigated the generalized Abel's functional equation

$$
\psi(x h(y)+y g(x))=\varphi(x)+\varphi(y) .
$$

[^0]When $h=g$, we get the original Abel's functional equation. In $[1,4]$, the authors investigated the functional equation

$$
h\left(x h(y)^{k}+y h(x)^{n}\right)=\operatorname{th}(x) h(y) .
$$

The equation $(\ddagger)$ with $k=n=t=1$ becomes the equation

$$
h(x h(y)+y h(x))=h(x) h(y)
$$

which is the equation defining anti-derivations in the case where $f$ is a bounded linear mapping defined on an algebra. Together with the equation

$$
h(x h(y)+y h(x)-x y)=h(x) h(y)
$$

they are special cases of the generalized Baxter equation

$$
h(x h(y)+y h(x)-\kappa x y)=\omega h(x) h(y)
$$

See [3] for details.
Throughout this paper, let $\mathcal{B}$ be a complex Banach algebra with norm $\|\cdot\|$.

The main purpose of this paper is to investigate generalized Baxter equations on Banach algebras, and generalized anti-derivations on Banach *-algebras.

## 2. Generalized Baxter functional equations on Banach algebras

In this section, assume that $h: \mathcal{B} \rightarrow \mathcal{B}$ is an additive mapping with $h(0)=0$.

Theorem 1. Let $\kappa, \omega \in \mathcal{B}$ be given. Assume that there exists a function $\varphi: \mathcal{B} \times \mathcal{B} \rightarrow[0, \infty)$ such that

$$
\begin{align*}
\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y\right) & <\infty,  \tag{i}\\
\|h(i x)-i h(x)\| & \leq \varphi(x, x),  \tag{ii}\\
\|h(x h(y)+y h(x)-\kappa x y)-\omega h(x) h(y)\| & \leq \varphi(x, y) \tag{iii}
\end{align*}
$$

for all $x, y \in \mathcal{B}$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then the additive mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ satisfies the generalized Baxter equation $(\dagger)$ and is $\mathbb{C}$-linear.

Proof. By the same reasoning as the proof of [2, Theorem], the additive mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ is $\mathbb{R}$-linear.

Since $h: \mathcal{B} \rightarrow \mathcal{B}$ is additive, it follows from (ii) that

$$
\|h(i x)-i h(x)\|=2^{-n}\left\|h\left(2^{n} i x\right)-i h\left(2^{n} x\right)\right\| \leq \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} x\right)
$$

which tends to zero as $n \rightarrow \infty$ by (i) for all $x \in \mathcal{B}$. So $h(i x)=i h(x)$ for all $x \in \mathcal{B}$. For each element $\lambda \in \mathbb{C}, \lambda=s+i t$, where $s, t \in \mathbb{R}$. Thus

$$
\begin{aligned}
h(\lambda x) & =h(s x+i t x)=\operatorname{sh}(x)+t h(i x)=\operatorname{sh}(x)+i t h(x) \\
& =\lambda h(x)
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and all $x \in \mathcal{B}$. So

$$
h(\zeta x+\eta y)=h(\zeta x)+h(\eta y)=\zeta h(x)+\eta h(y)
$$

for all $\zeta, \eta \in \mathbb{C}$ and all $x, y \in \mathcal{B}$. Hence the additive mapping $h: \mathcal{B} \rightarrow$ $\mathcal{B}$ is $\mathbb{C}$-linear.

Now by (iii) and the additivity of $h$,

$$
\begin{aligned}
& \|h(x h(y)+y h(x)-\kappa x y)-\omega h(x) h(y)\| \\
& =2^{-2 n}\left\|h\left(2^{n} x h\left(2^{n} y\right)+2^{n} y h\left(2^{n} x\right)-2^{2 n} \kappa x y\right)-\omega h\left(2^{n} x\right) h\left(2^{n} y\right)\right\| \\
& \quad \leq \frac{1}{2^{2 n}} \varphi\left(2^{n} x, 2^{n} y\right) \leq \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y\right),
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ by (i) for all $x, y \in \mathcal{B}$. Hence the additive mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ satisfies the generalized Baxter equation $(\dagger)$, as desired.

Corollary 2. Let $\kappa, \omega \in \mathcal{B}$ be given. Assume that there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\|h(i x)-i h(x)\| & \leq 2 \theta\|x\|^{p}, \\
\|h(x h(y)+y h(x)-\kappa x y)-\omega h(x) h(y)\| & \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
\end{aligned}
$$

for all $x, y \in \mathcal{B}$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$, then the additive mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ satisfies the generalized Baxter equation $(\dagger)$ and is $\mathbb{C}$-linear.

Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 1.
Now we are going to investigate generalized anti-derivations on Banach $*$-algebras, which is a bounded linear $*$-mapping with $\kappa=0$ in $(\dagger)$.

Theorem 3. Let $\mathcal{B}$ be a Banach $*$-algebra, and let $\kappa, \omega \in \mathcal{B}$ be given. Let $h: \mathcal{B} \rightarrow \mathcal{B}$ be a continuous mapping for which there exists a function $\varphi: \mathcal{B} \times \mathcal{B} \rightarrow[0, \infty)$ satisfying (i) and (ii) such that

$$
\begin{aligned}
\|h(x h(y)+y h(x))-\omega h(x) h(y)\| & \leq \varphi(x, y) \\
\left\|h\left(x^{*}\right)-h(x)^{*}\right\| & \leq \varphi(x, x)
\end{aligned}
$$

for all $x, y \in \mathcal{B}$. Then the additive mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ is a generalized anti-derivation.

Proof. Since $h: \mathcal{B} \rightarrow \mathcal{B}$ is continuous, $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{B}$. By the same reasoning as the proof of Theorem 1 , the additive mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ satisfies the generalized Baxter equation $(\dagger)$ with $\kappa=0$ and is $\mathbb{C}$-linear. But $h: \mathcal{B} \rightarrow \mathcal{B}$ is a continuous mapping, which is $\mathbb{C}$-linear. So $h: \mathcal{B} \rightarrow \mathcal{B}$ is bounded.

It follows from (iv) that

$$
\left\|h\left(x^{*}\right)-h(x)^{*}\right\|=2^{-n}\left\|h\left(2^{n} x^{*}\right)-h\left(2^{n} x\right)^{*}\right\| \leq \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} x\right)
$$

which tends to zero as $n \rightarrow \infty$ by (i) for all $x \in \mathcal{B}$. So $h\left(x^{*}\right)=h(x)^{*}$ for all $x \in \mathcal{B}$. Hence the additive mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ is a generalized anti-derivation, as desired.

Corollary 4. Let $\kappa, \omega \in \mathcal{B}$ be given. Assume that there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\|h(i x)-i h(x)\| & \leq 2 \theta\|x\|^{p} \\
\|h(x h(y)+y h(x))-\omega h(x) h(y)\| & \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \\
\left\|h\left(x^{*}\right)-h(x)^{*}\right\| & \leq 2 \theta\|x\|^{p}
\end{aligned}
$$

for all $x, y \in \mathcal{B}$. If $h: \mathcal{B} \rightarrow \mathcal{B}$ is a continuous mapping, then the additive mapping $h: \mathcal{B} \rightarrow \mathcal{B}$ is a generalized anti-derivation.

Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$, and apply Theorem 3.

## References

1. N. Brillouët-Belluot, On the solutions of the functional equation $f\left(f(y)^{k} x+f(x)^{l} y\right)$ $=\lambda f(x) f(y)$, Publ. Math. Debrecen 41 (1987), 213-223.
2. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
3. M. Sablik, On a generalized functional equation of Abel, Publ. Math. Debrecen 60 (2002), 29-46.
4. M. Sablik and P. Urban, On the solutions of the equation $f\left(x f(y)^{k}+y f(x)^{l}\right)$ $=f(x) f(y)$, Demonstratio Math. 18 (1985), 863-867.

> *

Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail: cgpark@math.cnu.ac.kr


[^0]:    *Supported by Korea Research Foundation Grant KRF-2002-041-C00014.
    Received by the editors on June 20, 2003.
    2000 Mathematics Subject Classifications: Primary 39B52, 47B48.
    Key words and phrases: Banach *-algebra, Baxter functional equation, antiderivation.

