JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **16**, No.1, June 2003

SPLITTING OFF T-SPACES AND DUALITY

YEON SOO YOON*

ABSTRACT. We obtain a necessary condition for splitting T-space off a space in terms of cyclic maps, and also obtain a necessary condition for splitting co-T-spaces in terms of cocyclic maps.

1. Introduction

Given a space X, what is the largest torus T^n such that X is homotopy equivalent to $Y \times T^n$ for some space Y?

In [5], Gottlieb answered the above question using the Gottlib group $G_1(X)$. For a space X, the toral number of X is defined to be the biggest non negative integer n such that X is homotopy equivalent to $Y \times T^n$ for some space Y. On the other hand, for a subgroup G of $\pi_1(X)$, consider the image of G under the Hurewicz homomorphism h in the homology group. Then h(G) may contain free summands of $H_1(X)$. Then the Hurewicz rank of G is defined to be the maximum rank of these free summands. If there is no free summand in h(G) then he said the Hurewicz rank of G is zero and if there is no maximum he say the Hurewicz rank of G is infinite. Then Gottlieb discovered the following beautiful theorem.

THEOREM 1.1. ([5] Main Theorem.) The toral number of X equals to the Hurewicz rank of $G_1(X)$.

^{*}This work was supported by Hannam University Research Fund, 2002. Received by the editors on May 29, 2003.

²⁰⁰⁰ Mathematics Subject Classifications : Primary 55P45, 55P35.

Key words and phrases: T-space, co-T-space, cyclic map, cocyclic map.

YEON SOO YOON

In [2], Dula and Gottlieb extended the above theorem to a splitting theorem which characterizes when a given space is a cartesian product of an H-space.

THEOREM 1.2. ([2] Theorem 1.3.) Given spaces X, K and Y the following statements are equivalent;

- (1) K is an H-space and there exists a space Y such that X is homotopy equivalent to $K \times Y$.
- (2) There is a class $i: K \to X$ in the generalized Gottlieb set G(K, X) such that $i^{\#}: [X, K] \to [K, K]$ has a right inverse.
- (3) There are classes i in G(K, X) and $r : X \to K$ such that r is a left homotopy inverse for i.

On the other hand, it is clear that if G is a topological group then every loop on G can be translated to the base of G and the space of free loop G^{S^1} is homeomorphic to $G \times \Omega G$. More generally, any Hspace has this property up to homotopy. In [1], Aguade defined a space X to be a *T*-space if the fibration $\Omega X \to X^{S^1} \to X$ is fiber homotopy equivalent to the trivial fibration $\Omega X \to X \times \Omega X \to X$, where T stands for translation and X^{S^1} is the free loop space of X, ΩX is the based loop space of X. It was also shown [1] that any H-space is a T-space, but the converse does not hold. However, it is not known if there is any finite T-space which fails to be an H-space. In [14], we showed that any H-space is a T-space and any T-space is a G-space using cyclic maps. Also, we defined and studied the concepts of co-T-spaces and some properties of co-T-spaces.

In this paper, we would like to obtain some conditions which characterize when a given space is a cartesian product of a T-space and also to obtain some conditions for dual situation. In Section 2, we can obtain a necessary condition for splitting T-space off a space as follows;

THEOREM 1.3. (Theorem 2.5.) If K is a T-space and there exists a space Y such that X is homotopy equivalent to $K \times Y$, then there are

maps $i: K \to X$ and $r: X \to K$ such that r is a left homotopy inverse for i and $ie \in G(\Sigma \Omega K, X)$.

We do not know whether the converse of the above result holds or not. But we can show that if K is a co-H-space, then the converse of the above result holds. When K is a co-H-space, we know that K is an H-space if and only if K is a T-space. Thus the following corollary is another equivalent conditions for splitting H-space off a space.

COROLLARY 1.4. (Corollary 2.7.) Let K be a co-H-space. Then the following conditions are equivalent;

- (1) K is a T-space and there exists a space Y such that X is homotopy equivalent to $K \times Y$.
- (2) There is a map $i: K \to X$ such that $i^{\#}: [X, K] \to [K, K]$ has a right inverse and $ie \in G(\Sigma \Omega K, X)$.
- (3) There are maps $i: K \to X$ and $r: X \to K$ such that r is a left homotopy inverse for i and $ie \in G(\Sigma \Omega K, X)$.

In Section 3, we would like to study conditions for splitting co-Tspace off a space. We show that if X and $K \vee Y$ have the same homotopy type for some space Y, then K is a co-T-space if and only if there exist maps $i : K \to X$ and $r : X \to K$ such that $ri \sim 1$ and $e'r \in DG(X, \Omega\Sigma K)$. Thus we can obtain also a necessary condition for splitting T-space off a space. We can also obtain a necessary and sufficient condition for splitting co-T-space off a space which is a dual result of the above corollary.

Throughout this paper, space means a space of homotopy type of connected locally finite CW complex. We assume also that spaces have non-degenerate base points. All maps shall mean continuous functions. The base point as well as the constant map will be denoted by *. For simplicity, we use the same symbol for a map and its homotopy class. Also, we denote by [X, Y] the set of homotopy classes of pointed maps $X \to Y$. The identity map of space will be denoted by 1 when it is clear from the context. The diagonal map $\Delta: X \to X \times X$ is given

YEON SOO YOON

by $\Delta(x) = (x, x)$ for each $x \in X$, the folding map $\nabla \colon X \lor X \to X$ is given by $\nabla(x, *) = \nabla(*, x) = x$ for each $x \in X$. ΣX denote the reduced suspension of X and ΩX denote the based loop space of X. The adjoint functor from the group $[\Sigma X, Y]$ to the group $[X, \Omega Y]$ will be denoted by τ . The symbols e and e' denote $\tau^{-1}(1_{\Omega X})$ and $\tau(1_{\Sigma X})$, respectively.

2. Splitting *T*-spaces off a space

This section reviews some results about cyclic maps. In this section, space means a space of homotopy type of connected locally finite CWcomplex. A based map $f: A \to X$ is called *cyclic* [13] if there exists a map $F: X \times A \to X$ such that $Fj \sim \nabla(1 \vee f)$, where $j: X \vee A \to X \times A$ is the inclusion and $\nabla: X \vee X \to X$ is the folding map. The *Gottlieb set* denoted G(A, X) is the set of all homotopy classes of cyclic maps from A to X. The concept of cyclic maps was first introduced and studied by Gottlieb [3] and Varadarajan [13]. Gottlieb [4] introduced and studied the evaluation subgroups $G_m(X)$ of $\pi_m(X)$. $G_m(X)$ is defined to be the set of all homotopy classes of cyclic maps from S^m to X. A space X satisfying $G_m(X) = \pi_m(X)$ for all m is called a G-space.

THEOREM 2.1. [8] The following are equivalent;

- (1) X is an H-space.
- (2) 1_X is cyclic.
- (3) G(A, X) = [A, X] for any space A.

THEOREM 2.2. [14] The following are equivalent;

- (1) X is a T-space.
- (2) $e: \Sigma \Omega X \to X$ is cyclic.
- (3) $G(\Sigma A, X) = [\Sigma A, X]$ for any space A.

PROPOSITION 2.3. [13] Let $v : A \to X$ be an arbitrary map and let $r : Y \to Z$ have a right homotopy inverse. If $f : X \to Y$ is a cyclic map, then so are $fv : A \to Y$ and $rf : X \to Z$.

From the above two theorems, we can easily know that any *H*-space is a *T*-space. In [11], Stasheff pointed out that ΩX is homotopy commutative if and only if the map $\nabla(e \lor e) : \Sigma \Omega X \lor \Sigma \Omega X \to X$ may be extended to $\Sigma \Omega X \times \Sigma \Omega X$. Thus we know that for any *T*-space $X, \Omega X$ is homotopy commutative. In [7] Hilton showed that X is a co-*H*-space if and only if $e : \Sigma \Omega X \to X$ has a right homotopy inverse $s : X \to \Sigma \Omega X$. Then we know, from the above theorems and proposition, that if $e : \Sigma \Omega X \to X$ is cyclic and X is a co-*H*-space, then $1_X \sim es$ is cyclic. Thus we know that *H*-spaces and *T*-spaces are equivalent in the category of co-*H*-spaces. We also obtained the following result.

PROPOSITION 2.4. ([14] Theorem 2.15.) Let X and $K \times Y$ have the same homotopy type for some space Y. Then K is a T-space if and only if there exist maps $i : K \to X$ and $r : X \to K$ such that $ri \sim 1$ and $ie \in G(\Sigma \Omega K, X)$.

Thus we have a necessary condition for splitting T-space off a space as follows;

THEOREM 2.5. If K is a T-space and there exists a space Y such that X is homotopy equivalent to $K \times Y$, then there are maps $i : K \to X$ and $r : X \to K$ such that r is a left homotopy inverse for i and $ie \in G(\Sigma \Omega K, X)$.

We do not know whether the converse of the above result holds or not. But we can show that if K is a co-H-space, then the converse of the above result holds.

THEOREM 2.6. Let K be a co-H-space. If there are maps $i: K \to X$ and $r: X \to K$ such that r is a left homotopy inverse for i and $ie \in G(\Sigma \Omega K, X)$, then K is a T-space and there exists a space Y such that X is homotopy equivalent to $K \times Y$.

Proof. Let $h : Y \to X$ be the inclusion of the homotopy fiber of $r : X \to K$. By the Milnor's result in [10], ΩK is homotopy equivalent

YEON SOO YOON

to a CW-complex. Thus in the fiber sequence $\Omega K \to Y \to X$ the base and fiber are homotopy equivalent to a CW-complex, hence by the Stasheff's result in [12], Y is homotopy equivalent to a CW-complex. Since $ie \in G(\Sigma \Omega K, X)$ is cyclic, there is a map $F : \Sigma \Omega K \times X \to X$ such that $Fj \sim \nabla (ie \lor 1)$. Then the composition $rF(1 \times i) : \Sigma \Omega K \times K \to K$ establishes the fact that $e : \Sigma \Omega K \to K$ is cyclic. Thus we know, by Theorem 2.2, that K is a T-space. Since K is a co-H-space, there is a map $s : K \to \Sigma \Omega K$ such that $es \sim 1 : K \to K$. Let $g = F(s \times h) :$ $K \times Y \to X$. Consider the following diagram;

By the definition of g, the left square commutes, while the right square commutes after π_* is applied. Thus g induces an isomorphism of homotopy groups, and as all spaces are homotopy equivalent to CW-complexes, it follows that g is a homotopy equivalence.

We can reprove the above theorem as follows; Since K is a co-H-space, there is a map $s : K \to \Sigma \Omega K$ such that $es \sim 1_K$. Since $ie : \Sigma \Omega K \to X$ is cyclic and $es \sim 1_K$, from Proposition 2.3, we have that $i \sim (ie)s \in G(K, X)$. Thus we have, from Theorem 1.2, that K is an H-space and there exists a space Y such that X is homotopy equivalent to $K \times Y$. When K is a co-H-space, we know that K is an H-space if and only if K is a T-space.

Thus the following corollary is another equivalent conditions for splitting H-space off a space.

COROLLARY 2.7. Let K be a co-H-space. Then the following conditions are equivalent;

(1) K is a T-space and there exists a space Y such that X is homotopy equivalent to $K \times Y$.

- (2) There is a map $i: K \to X$ such that $i^{\#}: [X, K] \to [K, K]$ has a right inverse and $ie \in G(\Sigma \Omega K, X)$.
- (3) There are maps $i: K \to X$ and $r: X \to K$ such that r is a left homotopy inverse for i and $ie \in G(\Sigma \Omega K, X)$.

3. Splitting co-*T*-spaces off a space

A based map $f: X \to A$ is called *cocyclic* [13] if there exists a map $\phi: X \to X \lor A$ such that $j\phi \sim (1 \times f)\Delta$, where $j: X \lor A \to X \times A$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. The *dual Gottlieb set* denoted DG(X, A) is the set of all homotopy classes of cocyclic maps from X to A. Haslam [6] introduced and studied the coevaluation subgroups $G^m(X)$ of $H^m(X)$. $G^m(X)$ is defined to be the set of all homotopy classes of cocyclic maps from X to $K(\mathbb{Z}, m)$. A space X satisfying $G^m(X) = H^m(X)$ for all m is called a G'-space. In [14], we defined the concept of a co-T-space and showed that any co-H-space is a co-T-space and any co-T-space is a G'-space using cocyclic maps. The purpose of this section is to give necessary sufficient conditions for splitting co-T-space K off a space. The proofs are dual to those of section 2. From now on, every space is assumed to be homotopy equivalent to a connected simply connected CW complex.

THEOREM 3.1. [9] The following are equivalent;

- (1) X is a co-H-space.
- (2) 1_X is cocyclic.
- (3) DG(X, A) = [X, A] for any space A.

DEFINITION 3.1. A space X is called a *co-T-space* [14] if $e': X \to \Omega \Sigma X$ is cocyclic.

A co-T-space may be characterized by the dual Gottlieb group as follows;

THEOREM 3.2. ([14] Theorem 3.3.) The following are equivalent;

(1) X is a co-T-space.

(2) $e': X \to \Omega \Sigma X$ is cocyclic.

(3) $DG(X, \Omega A) = [X, \Omega A]$ for any space A.

PROPOSITION 3.3. [13] Let $\theta : A \to B$ be arbitrary map and $i : Y \to X$ has a left homotopy inverse. If $f : X \to A$ is a cocyclic map, then so are $\theta f : X \to B$ and $fi : Y \to A$.

In [7], Hilton showed that X is an H-space if and only if $e': X \to \Omega \Sigma X$ has a left homotopy inverse $s': \Omega \Sigma X \to X$. Then we know, from the above theorems and proposition, that if $e': X \to \Omega \Sigma X$ is cocyclic, then $1_X \sim s'e'$ is cocyclic. Thus we know that co-H-spaces and co-T-spaces are equivalent in the category of H-spaces. Now we can obtain the following result.

THEOREM 3.4. Let X and $K \vee Y$ have the same homotopy type for some space Y. Then K is a co-T-space if and only if there exist maps $i: K \to X$ and $r: X \to K$ such that $ri \sim 1$ and $e'r \in DG(X, \Omega\Sigma K)$.

Proof. Suppose K is a co-T-space. Since X is homotopy equivalent to $K \vee Y$, there exist maps $f: X \to Y \vee K$, $g: Y \vee K \to X$ such that $gf \sim 1_X$ and $fg \sim 1_{Y \vee K}$. Let $r = p_2 f: X \xrightarrow{f} Y \vee K \xrightarrow{p_2} K$ and $i = gi_2: K \xrightarrow{i_2} Y \vee K \xrightarrow{g} X$, where $p_2: Y \vee K \to K$ is the projection and $i_2: K \to Y \vee K$ is the inclusion. Then $ri = p_2 fgi_2 \sim p_2 i_2 = 1_X$. Now we show that $e'r: X \to \Omega\Sigma K$ is cocyclic. Since K is a co-T-space, there is a map $\mu: K \to K \vee \Omega\Sigma K$ such that $j\mu = (1 \times e')\Delta$. Consider the composite map $\rho: X \xrightarrow{f} Y \vee K \xrightarrow{(1 \vee \mu)} Y \vee K \vee \Omega\Sigma K \xrightarrow{(g \vee 1)} X \vee \Omega\Sigma K$. Then $j\rho \sim (1 \times e'r)\Delta$. Thus $e'r: X \to \Omega\Sigma K$ is cocyclic. On the other hand, suppose there is a map $i: K \to X$ which has a left homotopy inverse $r: X \to K$ and $e'r: X \to \Omega\Sigma K$ is cocyclic. Then we know, from Proposition 3.3, that $e' \sim (e'r)i: K \to \Omega\Sigma K$ is cocyclic. Thus K is a co-T-space.

THEOREM 3.5. ([2] Theorem 2.2.) The following conditions are equivalent;

- (1) K is a co-H-space and there exists a simply connected space Y such that X is homotopy equivalent to $K \vee Y$.
- (2) There is a map $r: X \to K$ such that $r_{\#}: [K, X] \to [K, K]$ has a right inverse and $r \in DG(X, K)$.
- (3) There are maps $i: K \to X$ and $r: X \to K$ such that r is a left homotopy inverse for i and $r \in DG(X, K)$.

From Theorem 3.4, we have a necessary condition for splitting co-T-space off a space as follows;

THEOREM 3.6. If K is a co-T-space and X is homotopy equivalent to $K \vee Y$, then there exist maps $i: K \to X$ and $r: X \to K$ such that $ri \sim 1$ and $e'r \in DG(X, \Omega \Sigma K)$.

We do not know whether the converse of the above result holds or not. But we can show that if K is an H-space, the converse of the above result holds.

In the following theorem, X and K are homotopy equivalent to connected and simply connected CW-complexes.

THEOREM 3.7. Let K be an H-space. If there are maps $i: K \to X$ and $r: X \to K$ such that r is a left homotopy inverse for i and $e'r \in DG(X, \Omega\Sigma K)$, then K is a co-T-space and there exists a simply connected space Y such that X is homotopy equivalent to $K \vee Y$.

Proof. Let $h: X \to Y$ be the inclusion of the homotopy cofiber of $i: K \to X$. It is clear that ΣK and $Y = C_i = M_i/K$ are homotopy equivalent to CW-complexes, where C_i is the mapping cone of $i: K \to X$ and M_i is the mapping cylinder of $i: K \to X$. Since $e'r: X \to \Omega\Sigma K$ is cocyclic, there is a map $\rho: X \to X \lor \Omega\Sigma K$ such that $j\rho = (1 \times e'r)\Delta$. Then the composition $(r \lor 1)\rho i$ establishes the fact that $e': K \to \Omega\Sigma K$ is cocyclic. Thus we know, by Theorem 3.2, that K is a co-T-space. Since K is an H-space, there is a map $s': \Omega\Sigma K \to K$ such that $s'e' \sim 1: K \to K$. Let $g: X \xrightarrow{\rho} X \lor \Omega\Sigma K \xrightarrow{(h \lor s')} Y \lor K$. Consider the

following diagram;

$$Y \xleftarrow{p_1} Y \lor K \xleftarrow{i_2} K$$
$$\parallel \qquad g^{\uparrow} \qquad \parallel$$
$$Y \xleftarrow{h} X \xleftarrow{i} K$$

By the definition of g, the left square is homotopy commutative, while the right square commutes after H_* is applied. Thus g induces an isomorphism of homology groups, and as all spaces are homotopy equivalent to simply connected CW-complexes, it follows that g is a homotopy equivalence.

We can also reprove the above theorem as follows; Since K is an H-space, there is a map there is a map $s' : \Omega \Sigma K \to K$ such that $s'e' \sim 1 : K \to K$. Since $e'r : X \to \Omega \Sigma K$ is cocyclic and $s'e' \sim 1_K$, from Proposition 3.3, we have that $r \sim s'(e'r) \in DG(X, K)$. Thus we have, from Theorem 3.5, that K is a co-H-space and there exists a simply connected space Y such that X is homotopy equivalent to $K \vee Y$. Since K is an H-space, we know that K is a co-H-space if and only if K is a co-T-space.

Thus the following corollary is another equivalent conditions for splitting co-H-space off a space.

COROLLARY 3.8. Let K be an H-space. Then the following conditions are equivalent;

- (1) K is a co-T-space and there exists a simply connected space Y such that X is homotopy equivalent to $K \vee Y$.
- (2) There is a map $r: X \to K$ such that $r_{\#}: [K, X] \to [K, K]$ has a right inverse and $e'r \in DG(X, \Omega\Sigma K)$.
- (3) There are maps $i: K \to X$ and $r: X \to K$ such that r is a left homotopy inverse for i and $e'r \in DG(X, \Omega\Sigma K)$.

References

- 1. J. Aguade, Decomposable free loop spaces, Can. J. Math. 39(1987), 938-955.
- G. Dula and D. H. Gottlieb, Splitting off H-spaces and Conner-Raymond Splitting Theorem, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 37(1990), 321-334.
- D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87(1965), 840-856.
- D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91(1969), 729-756.
- D. H. Gottlieb, Splitting off tori and the evaluation subgroup of the fundamental group, Israel. J. Math. 66(1989), 216-222.
- H. B. Haslam, G-spaces and H-spaces, Ph. D. Thesis, Univ. of California, Irvine, 1969.
- P. Hilton, *Homotopy Theory and Duality*, Gordon and Breach Science Publishers, Inc., 1965.
- 8. K. L. Lim, On cyclic maps, J. Austral. Math. Soc. Series A 32(1982), 349-357.
- K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30(1987), 63-71.
- J. W. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 90(1959), 272-280.
- J. Stasheff, On homotopy abelian H-spaces, Proc. Camb. Phil. Soc. 57(1961), 734.
- J. Stasheff, A classification theorem for fiber spaces, Topology 2(1963), 239-246.
- K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33(1969), 141-164.
- M. H. Woo and Y. S. Yoon, *T-spaces by the Gottlieb groups and duality*, J. Austral. Math. Soc. Series A 59(1995), 193-203.

DEPARTMENT OF MATHEMATICS HANNAM UNIVERSITY DAEJEON 306-791, KOREA *E-mail*: yoon@math.hannam.ac.kr

*