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AN ESCAPE CRITERION FOR THE COMPLEX

POLYNOMIAL, WITH APPLICATIONS TO THE

DEGREE-n BIFURCATION SET

Young Ik Kim*

Abstract. Let Pc(z) = z
n + c be a complex polynomial with an

integer n ≥ 2. We derive a criterion that the critical orbit of Pc escapes

to infinity and investigate its applications to the degree-n bifurcation

set. The intersection of the degree-n bifurcation set with the real

line as well as with a typical symmetric axis is explicitly written as a

function of n. A well-defined escape-time algorithm is also included

for the improved construction of the degree-n bifurcation set.

1. Introduction

An escape criterion has been investigated by Devaney([4−7]) and

other researchers for the complex quadratic polynomial z2 + c. In this

paper, we extend the investigation to a more general complex poly-

nomial Pc(z) = zn + c with n ≥ 2. The intersection of the degree-n

bifurcation set([4, 8]) with the real line is introduced by Carleson and

Gamelin([3]) for the case of n = 2. Using the escape criterion and the

symmetry([8]) of the degree-n bifurcation set, the intersection with the

real line as well as with a typical symmetric axis will be pursued for

more general cases with n ≥ 2. An escape-time algorithm([2]) con-

structing the degree-n bifurcation set is also established on the basis

of the escape criterion presented here. Its implementation is shown in
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Figure 1 for typical degree-n bifurcation sets. The following notations

and symbols are used throughout the paper.

C : set of all complex numbers.

R : set of all real numbers.
N : set of all natural numbers.

fk(z) = f ◦ fk−1(z): k-fold composite map of f at z with f0(z) = z.

Definition 1.1. Let Pc(z) = zn + c for an integer n ≥ 2, with

c, z ∈ C . Then the degree-n bifurcation set is defined to be the set

M =
{

c ∈ C : lim
k→∞

P k
c (0) 6= ∞

}

.

If n = 2, it reduces to the Mandelbrot set([2−8, 10, 11]).

2. An escape criterion for the complex polynomial

It is not convenient to construct M using Definition 1.1 since the

critical orbit may contain the infinite number of terms. The following

theorem states the well-defined limit behavior for the boundedness of
the critical orbit of the complex polynomial zn + c.

Theorem 2.1. Let Pc(z) = zn + c for n ∈ N − {1}, with c, z ∈ C .

Then

lim
k→∞

P k
c (0) 6= ∞ if and ony if |P k

c (0)| ≤ 2
1

n−1 for all k ≥ 1

Proof. If |c| = |Pc(0)| > 2
1

n−1 , one can show by induction on k ≥ 1

that

|P k+1
c (0)| ≥ |c|(|c|n−1 − 1)nk−1

(1.1)

According to Eqn.(1.1), we have |P k
c (0)| → ∞ as k → ∞. It suffices

to show that the converse is true. Now suppose that there exists a

positive integer m ≥ 1 such that |P m
c (0)| = 2

1

n−1 + δ > 2
1

n−1 with

δ > 0. If |c| = |Pc(0)| > 2
1

n−1 , then we obtain |P k
c (0)| → ∞ as k → ∞.

If |c| = |Pc(0)| ≤ 2
1

n−1 , then



ESCAPE CRITERION FOR COMPLEX POLYNOMIAL 9

|P m+1
c (0)| ≥ |P m

c (0)|n − |c| ≥ (2
1

n−1 + δ)n − 2
1

n−1

= 2
n

n−1 (1 + δ 2
−1

n−1 )n − 2
1

n−1 ≥ 2
1

n−1 + 2nδ

Proceeding by induction, we obtain |P m+k
c (0)| ≥ 2

1

n−1 +(2n)kδ → ∞ as

k → ∞, completing the proof.

The value 21/(n−1) generalizes the escape criterion for the complex

polynomial zn + c and it certainly reduces to the value 2 for the well-

known Mandelbrot set. Theorem 2.2 follows immediately from the

result of Theorem 2.1.

Theorem 2.2. Let n ≥ 2 be an integer. Then we have the degree-n

bifurcation set

M = {c ∈ C : |P k
c (0)| ≤ 2

1

n−1 for all k ≥ 1} ⊂ {c ∈ C : |c| ≤ 21/(n−1)}.

3. Applications and concluding remarks

From the result of Section 2, some properties of the degree-n bifur-

cation set are deduced including the well-defined escape-time algorithm

constructing the degree-n bifurcation set. In Theorem 3.1, the inter-

section of the degree-n bifurcation set with the real line is explicitly

written as a function of n using the results of Theorem 2.2. Theorem

3.2 gives an extended result of Theorem 3.2 by rotating the real line

by an appropriate angle θk = 2kπ/(n − 1) through the origin in the

complex plane ([1]).

Theorem 3.1. Let n ≥ 2 be a given integer and ρ = (1−1/n)(1/n)1/(n−1).

Then

M ∩R =

{

[−2
1

n−1 , ρ] if n is even
[−ρ, ρ] if n is odd.

Proof. Consider c ∈ [−2
1

n−1 , 2
1

n−1 ] and let x be a real fixed point of

Pc such that

Pc(x) = xn + c = x.
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When n is even, it can be shown that c = x−xn assumes its maximum

ρ at x = (1/n)1/(n−1). Hence it suffices to consider c ∈ [−2
1

n−1 , ρ]. Let

a > 0 be the largest real fixed point of Pc such that an + c = a. Indeed,

one can show that a = 2
1

n−1 . For 0 < c = Pc(0) = a − an ≤ ρ < a, it

follows that

0 < P k
c (0) < an + c = a

by induction on k ≥ 1. Hence such c ∈ M . For −2
1

n−1 = −a ≤ c =

Pc(0) ≤ 0, it is clear that for all k ≥ 1 with even n

P k+1
c (0) = P k

c (0)n + c ≥ c ≥ −a,

−a ≤ c ≤ P 2
c (0) = Pc(0)

n + c = |Pc(0)|n + c ≤ an + c = a.

Proceeding by induction, 0 ≤ |P k
c (0)| ≤ a for all k ∈ N with −2

1

n−1 ≤
c ≤ 0. Hence such c ∈ M . As a result, M ∩ R = [−2

1

n−1 , ρ].

When n is odd, due to symmetry studied by Geum and Kim([8]),

it suffices to consider for c > 0. For 0 < ρ < c ≤ 2
1

n−1 , we have c =

Pc(0) > ρ > 0. Proceeding by induction on k ≥ 2, we have P k+1
c (0) >

P k
c (0) > c > ρ. Thus {P k

c (0)} is monotone increasing and not bounded

above, from which limk−>∞ P k
c (0) = ∞. Hence such c /∈ M . For

0 ≤ c ≤ ρ, let a > 0 be the largest real fixed point of Pc such that

an + c = a. Proceeding by induction on k ≥ 1, we have 0 ≤ P k
c (0) < a

for all k ∈ N . Hence such c ∈ M . Consequently, the symmetry shows

that M ∩R = [−ρ, ρ].

Remark 1. If n = 2, then Theorem 2.2 gives the result of Carleson

and Gamelin ([3]).

The symmetry of the degree-n bifurcation set, together with the

result of Theorem 3.1, leads immediately to the following Theorem 3.2

which describes the intersection of the degree-n bifurcation set with a

typical symmetric axis as a function of n.
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Theorem 3.2. Let n ∈ N−{1} be given and ρ = (1−1/n)(1/n)1/(n−1).

For each k ∈ {0, 1, 2, · · · , n − 2}, let θk = 2kπ/(n − 1) and Ωk = {c ∈
C : c = x + iy, x ∈ R , y = x tan θk, with i =

√
−1} denote a

symmetric axis of M . Then we obtain

M ∩ Ωk = {c ∈ C : c = x + iy, a cos θk ≤ x ≤ ρ cos θk y = x tan θk},

where a =

{

−2
1

n−1 if n is even
−ρ if n is odd.

As a result of the escape criterion described in Theorem 2.2, we es-

tablish the following improved escape-time algorithm ([2]) which easily

handles the infinite number of terms in calculating the critical orbit.

Algorithm 1. Let Pc(z) = zn + c for an integer n ≥ 2, with

c, z ∈ C . Let BGCO denote the color number of escaping points

and nc denote the maximum number of indexed color numbers. Then

the construction algorithm of the degree-n bifurcation set is described

below:

Step 1. Choose a maximum number of iterations, ITER and confine

a region contained in {c ∈ C : |c| ≤ 21/(n−1)}.
Step 2. For each point c in the confined region, compute the first

ITER points in the critical orbit of Pc and store the last nc − 1 points

among them.

Step 3. If |P i
c (0)| > 21/(n−1) for some i ≤ ITER, then stop the

iteration and paint the grid point c in a color of BGCO.

Step 4. If |P i
c (0)| ≤ 21/(n−1)for all i ≤ ITER, then

1) compute the period k of the orbit from the stored points.

2) (a) if 1 ≤ k ≤ nc − 1, then paint the grid point c in a color of

index number k

(b) else paint the grid point c in a color of BGCO.
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Definition 3.1. The attracting period-k component ([9]) is defined

as the set

M k
′ = {c ∈ C : there exists z0 such that P k

c (z0) = z0,

∣

∣

∣

∣

d

dz
P k

c (z)

∣

∣

∣

∣

z=z0

< 1}.

On the basis of Algorithm 1, typical degree-n bifurcation sets are con-

structed and shown in Figure 1 in the c-parameter plane for 2 ≤ n ≤ 7.

The component M
′

k
is identified by a number k and shaded in different

patterns or colors. It can be easily shown that the interval [−21/(n−1), ρ]

or [−ρ, ρ] approaches [−1, 1] as n tends to infinity. Although details of

our elaborate numerical experiments are not shown here, careful mea-

surements from Figure 1 show a good agreement with the result of

Theorem 3.1. Although the value 21/(n−1) nicely characterizes the es-

cape criterion, we require high number of iterations as well as sufficient

precision digits to check the criterion near the boundary of M .

A future study is to estimate the area of the degree-n bifurcation set

by counting the pixels whose critical orbits are judged to be bounded

on the basis of the escape criterion investigated here, assuming that

each pixel represents a square region of the complex plane.
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