JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **16**, No.1, June 2003

AN ESCAPE CRITERION FOR THE COMPLEX POLYNOMIAL, WITH APPLICATIONS TO THE DEGREE-*n* BIFURCATION SET

Young Ik Kim*

ABSTRACT. Let $P_c(z) = z^n + c$ be a complex polynomial with an integer $n \ge 2$. We derive a criterion that the critical orbit of P_c escapes to infinity and investigate its applications to the degree-n bifurcation set. The intersection of the degree-n bifurcation set with the real line as well as with a typical symmetric axis is explicitly written as a function of n. A well-defined escape-time algorithm is also included for the improved construction of the degree-n bifurcation set.

1. Introduction

An escape criterion has been investigated by Devaney([4-7]) and other researchers for the complex quadratic polynomial $z^2 + c$. In this paper, we extend the investigation to a more general complex polynomial $P_c(z) = z^n + c$ with $n \ge 2$. The intersection of the degree-*n* bifurcation set([4, 8]) with the real line is introduced by Carleson and Gamelin([3]) for the case of n = 2. Using the escape criterion and the symmetry([8]) of the degree-*n* bifurcation set, the intersection with the real line as well as with a typical symmetric axis will be pursued for more general cases with $n \ge 2$. An escape-time algorithm([2]) constructing the degree-*n* bifurcation set is also established on the basis of the escape criterion presented here. Its implementation is shown in

^{*}Supported by the research fund of Dankook University in 2003.

Received by the editors on March 17, 2003.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 00A05, 00A69, 37F45.

Key words and phrases: bifurcation, degree-n bifurcation set, Mandelbrot set,

intersection, escape criterion.

Figure 1 for typical degree-n bifurcation sets. The following notations and symbols are used throughout the paper.

C: set of all complex numbers.

 \boldsymbol{R} : set of all real numbers.

N: set of all natural numbers.

 $f^k(z) = f \circ f^{k-1}(z)$: k-fold composite map of f at z with $f^0(z) = z$.

DEFINITION 1.1. Let $P_c(z) = z^n + c$ for an integer $n \ge 2$, with $c, z \in \mathbf{C}$. Then the *degree-n bifurcation set* is defined to be the set

$$\boldsymbol{M} = \left\{ c \in \boldsymbol{C} : \lim_{k \to \infty} P_c^k(0) \neq \infty \right\}.$$

If n = 2, it reduces to the Mandelbrot set([2-8, 10, 11]).

2. An escape criterion for the complex polynomial

It is not convenient to construct M using Definition 1.1 since the critical orbit may contain the infinite number of terms. The following theorem states the well-defined limit behavior for the boundedness of the critical orbit of the complex polynomial $z^n + c$.

THEOREM 2.1. Let $P_c(z) = z^n + c$ for $n \in \mathbb{N} - \{1\}$, with $c, z \in \mathbb{C}$. Then

$$\lim_{k \to \infty} P_c^k(0) \neq \infty \text{ if and ony if } |P_c^k(0)| \le 2^{\frac{1}{n-1}} \text{ for all } k \ge 1$$

Proof. If $|c| = |P_c(0)| > 2^{\frac{1}{n-1}}$, one can show by induction on $k \ge 1$ that

$$|P_c^{k+1}(0)| \ge |c|(|c|^{n-1} - 1)^{n^{k-1}}$$
(1.1)

According to Eqn.(1.1), we have $|P_c^k(0)| \to \infty$ as $k \to \infty$. It suffices to show that the converse is true. Now suppose that there exists a positive integer $m \ge 1$ such that $|P_c^m(0)| = 2^{\frac{1}{n-1}} + \delta > 2^{\frac{1}{n-1}}$ with $\delta > 0$. If $|c| = |P_c(0)| > 2^{\frac{1}{n-1}}$, then we obtain $|P_c^k(0)| \to \infty$ as $k \to \infty$. If $|c| = |P_c(0)| \le 2^{\frac{1}{n-1}}$, then

$$|P_c^{m+1}(0)| \ge |P_c^m(0)|^n - |c| \ge (2^{\frac{1}{n-1}} + \delta)^n - 2^{\frac{1}{n-1}}$$
$$= 2^{\frac{n}{n-1}} (1 + \delta 2^{\frac{-1}{n-1}})^n - 2^{\frac{1}{n-1}} \ge 2^{\frac{1}{n-1}} + 2n\delta$$

Proceeding by induction, we obtain $|P_c^{m+k}(0)| \ge 2^{\frac{1}{n-1}} + (2n)^k \delta \to \infty$ as $k \to \infty$, completing the proof.

The value $2^{1/(n-1)}$ generalizes the escape criterion for the complex polynomial $z^n + c$ and it certainly reduces to the value 2 for the wellknown Mandelbrot set. Theorem 2.2 follows immediately from the result of Theorem 2.1.

THEOREM 2.2. Let $n \ge 2$ be an integer. Then we have the degree-*n* bifurcation set

$$\boldsymbol{M} = \{ c \in \boldsymbol{C} : |P_c^k(0)| \le 2^{\frac{1}{n-1}} \text{ for all } k \ge 1 \} \subset \{ c \in \boldsymbol{C} : |c| \le 2^{1/(n-1)} \}.$$

3. Applications and concluding remarks

From the result of Section 2, some properties of the degree-*n* bifurcation set are deduced including the well-defined escape-time algorithm constructing the degree-*n* bifurcation set. In Theorem 3.1, the intersection of the degree-*n* bifurcation set with the real line is explicitly written as a function of *n* using the results of Theorem 2.2. Theorem 3.2 gives an extended result of Theorem 3.2 by rotating the real line by an appropriate angle $\theta_k = 2k\pi/(n-1)$ through the origin in the complex plane ([1]).

THEOREM 3.1. Let $n \ge 2$ be a given integer and $\rho = (1-1/n)(1/n)^{1/(n-1)}$. Then

$$oldsymbol{M} \cap oldsymbol{R} \; = \left\{ egin{array}{c} [-2^{rac{1}{n-1}}, \;
ho] \; if \; n \; is \; even \ [-
ho, \;
ho] \; if \; n \; is \; odd. \end{array}
ight.$$

Proof. Consider $c \in [-2^{\frac{1}{n-1}}, 2^{\frac{1}{n-1}}]$ and let x be a real fixed point of P_c such that

$$P_c(x) = x^n + c = x.$$

Y.I. KIM

When n is even, it can be shown that $c = x - x^n$ assumes its maximum ρ at $x = (1/n)^{1/(n-1)}$. Hence it suffices to consider $c \in [-2^{\frac{1}{n-1}}, \rho]$. Let a > 0 be the largest real fixed point of P_c such that $a^n + c = a$. Indeed, one can show that $a = 2^{\frac{1}{n-1}}$. For $0 < c = P_c(0) = a - a^n \le \rho < a$, it follows that

$$0 < P_c^k(0) < a^n + c = a$$

by induction on $k \ge 1$. Hence such $c \in M$. For $-2^{\frac{1}{n-1}} = -a \le c = P_c(0) \le 0$, it is clear that for all $k \ge 1$ with even n

$$P_c^{k+1}(0) = P_c^k(0)^n + c \ge c \ge -a,$$

$$-a \le c \le P_c^{2}(0) = P_c(0)^n + c = |P_c(0)|^n + c \le a^n + c = a.$$

Proceeding by induction, $0 \leq |P_c^k(0)| \leq a$ for all $k \in \mathbb{N}$ with $-2^{\frac{1}{n-1}} \leq c \leq 0$. Hence such $c \in \mathbb{M}$. As a result, $\mathbb{M} \cap \mathbb{R} = [-2^{\frac{1}{n-1}}, \rho]$.

When *n* is odd, due to symmetry studied by Geum and Kim([8]), it suffices to consider for c > 0. For $0 < \rho < c \leq 2^{\frac{1}{n-1}}$, we have $c = P_c(0) > \rho > 0$. Proceeding by induction on $k \geq 2$, we have $P_c^{k+1}(0) > P_c^k(0) > c > \rho$. Thus $\{P_c^k(0)\}$ is monotone increasing and not bounded above, from which $\lim_{k\to\infty} P_c^k(0) = \infty$. Hence such $c \notin \mathbf{M}$. For $0 \leq c \leq \rho$, let a > 0 be the largest real fixed point of P_c such that $a^n + c = a$. Proceeding by induction on $k \geq 1$, we have $0 \leq P_c^k(0) < a$ for all $k \in \mathbf{N}$. Hence such $c \in \mathbf{M}$. Consequently, the symmetry shows that $\mathbf{M} \cap \mathbf{R} = [-\rho, \rho]$.

Remark 1. If n = 2, then Theorem 2.2 gives the result of Carleson and Gamelin ([3]).

The symmetry of the degree-n bifurcation set, together with the result of Theorem 3.1, leads immediately to the following Theorem 3.2 which describes the intersection of the degree-n bifurcation set with a typical symmetric axis as a function of n.

10

THEOREM 3.2. Let $n \in \mathbf{N} - \{1\}$ be given and $\rho = (1-1/n)(1/n)^{1/(n-1)}$. For each $k \in \{0, 1, 2, \dots, n-2\}$, let $\theta_k = 2k\pi/(n-1)$ and $\Omega_k = \{c \in \mathbf{C} : c = x + iy, x \in \mathbf{R}, y = x \tan \theta_k, with i = \sqrt{-1}\}$ denote a symmetric axis of \mathbf{M} . Then we obtain

$$\boldsymbol{M} \cap \boldsymbol{\Omega}_k = \{ c \in \boldsymbol{C} : c = x + iy, \ a \cos \theta_k \le x \le \rho \cos \theta_k \ y = x \tan \theta_k \},\$$

where
$$a = \begin{cases} -2^{\frac{1}{n-1}} & \text{if } n \text{ is even} \\ -\rho & \text{if } n \text{ is odd.} \end{cases}$$

As a result of the escape criterion described in Theorem 2.2, we establish the following improved escape-time algorithm ([2]) which easily handles the infinite number of terms in calculating the critical orbit.

ALGORITHM 1. Let $P_c(z) = z^n + c$ for an integer $n \ge 2$, with $c, z \in \mathbf{C}$. Let BGCO denote the color number of escaping points and n_c denote the maximum number of indexed color numbers. Then the construction algorithm of the degree-*n* bifurcation set is described below:

Step 1. Choose a maximum number of iterations, ITER and confine a region contained in $\{c \in \mathbf{C} : |c| \leq 2^{1/(n-1)}\}$.

Step 2. For each point c in the confined region, compute the first ITER points in the critical orbit of P_c and store the last $n_c - 1$ points among them.

Step 3. If $|P_c^i(0)| > 2^{1/(n-1)}$ for some $i \leq \text{ITER}$, then stop the iteration and paint the grid point c in a color of BGCO.

Step 4. If $|P_c^i(0)| \leq 2^{1/(n-1)}$ for all $i \leq \text{ITER}$, then

1) compute the period k of the orbit from the stored points.

2) (a) if $1 \le k \le n_c - 1$, then paint the grid point c in a color of index number k

(b) else paint the grid point c in a color of BGCO.

Y.I. KIM

DEFINITION 3.1. The attracting period-k component ([9]) is defined as the set

$$M_{k}' = \{ c \in C : there \ exists \ z_{0} \ such \ that \ P_{c}^{\ k}(z_{0}) = z_{0}, \left| \frac{d}{dz} P_{c}^{\ k}(z) \right|_{z=z_{0}} < 1 \}.$$

On the basis of Algorithm 1, typical degree-*n* bifurcation sets are constructed and shown in Figure 1 in the *c*-parameter plane for $2 \le n \le 7$. The component \mathbf{M}'_k is identified by a number *k* and shaded in different patterns or colors. It can be easily shown that the interval $[-2^{1/(n-1)}, \rho]$ or $[-\rho, \rho]$ approaches [-1, 1] as *n* tends to infinity. Although details of our elaborate numerical experiments are not shown here, careful measurements from Figure 1 show a good agreement with the result of Theorem 3.1. Although the value $2^{1/(n-1)}$ nicely characterizes the escape criterion, we require high number of iterations as well as sufficient precision digits to check the criterion near the boundary of \mathbf{M} .

A future study is to estimate the area of the degree-n bifurcation set by counting the pixels whose critical orbits are judged to be bounded on the basis of the escape criterion investigated here, assuming that each pixel represents a square region of the complex plane.

12

FIGURE 1. Typical degree-n bifurcation sets

References

1. Lars V. Ahlfors, Complex Analysis, 3rd ed., Mcgraw-Hill Inc., 1979.

Y.I. KIM

References

- 1. Lars V. Ahlfors, Complex Analysis, 3rd ed., Mcgraw-Hill Inc., 1979.
- Michael F. Barnsley, *Fractals Everywhere, 2nd ed.*, Academic Press Professional, 1993.
- Lennart Carleson and Theodore W. Gamelin, Complex Dynamics, Springer-Verlag, 1995.
- Robert L. Devaney, An Introduction to Chaotic Dynamical Systems, The Benjamin/Cummings Publishing Company, Inc., 1986.
- 5. Robert L. Devaney, Chaos, Fractals, and Dynamics, Addison-Wesley Inc., 1990.
- Robert L. Devaney, The Complex Dynamics of Quadratic Polynomials, Proceedings of Symposia in Applied Mathematics, 49 (1994).
- Robert L. Devaney, The Mandelbrot set, the Farey tree, and the Fibonacci sequence, Amer. Math. Monthly 106 (1999), pp. 289-302.
- Young H. Geum and Young I. Kim, A study on computation of component centers in the degree-n bifurcation set, Inter. J. Computer Math. 80 (2003), pp. 223-232.
- 9. James R. Munkres, Topology, 3rd ed., Prentice-Hall Inc, 1975.
- H. O. Peitgen and P. H. Richter, *The Beauty of Fractals*, Springer-Verlag, Berlin-Heidelberg, 1986.
- Mitsuhiro Shishikura, The boundary of the Mandelbrot set has Hausdorff dimension two, Astérisque 222 (1994), pp. 389-405.

*

DEPARTMENT OF APPLIED MATHEMATICS DANKOOK UNIVERSITY CHEONAN, 330-714, KOREA *E-mail*: yikbell@yahoo.co.kr