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SOME RESULTS ON MONOGENIC AND

FAITHFUL D.G. REPRESENTATIONS

Yong Uk Cho*

Abstract. Throughout this paper, we denote that R is a near-ring

and G an R-group. We initiate the study of R-substructures of G,

representations of R on G, monogenic R-groups, faithful R-groups

and faithful D.G. representations of near-rings.

Next, we investigate some properties of monogenic near-ring groups,
faithful monogenic near-ring groups, monogenic and faithful D.G.

representations in near-rings.

1. Introduction

In this paper, we initiate the study of R-substructures of G, rep-

resentations of R on G, monogenic R-groups, faithful R-groups and

faithful representations of D.G. near-rings.

Next, we examine some results of monogenic near-ring groups,

faithful monogenic near-ring groups, monogenic and faithful repre-

sentations in D.G. near-rings.

A near-ring R is an algebraic system (R,+, ·) with two binary op-

erations + and · such that (R,+) is a group (not necessarily abelian)

with neutral element 0, (R, ·) is a semigroup and a(b + c) = ab + ac

for all a, b, c in R. If R has a unity 1, then R is called unitary. An

element d in R is called distributive if (a+ b)d = ad+ bd for all a and

b in R.

An ideal of R is a subset I of R such that (i) (I, +) is a normal

subgroup of (R, +), (ii) a(I + b) − ab ⊂ I for all a, b ∈ R, (iii)
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(I + a)b − ab ⊂ I for all a, b ∈ R. If I satisfies (i) and (ii) then it

is called a left ideal of R. If I satisfies (i) and (iii) then it is called a

right ideal of R.

On the other hand, a R-subgroup of R is a subset H of R such that

(i) (H, +) is a subgroup of (R, +), (ii) RH ⊂ H and (iii) HR ⊂ H.

If H satisfies (i) and (ii) then it is called a left R-subgroup of R. If H

satisfies (i) and (iii) then it is called a right R-subgroup of R. In case,

(H, +) is normal in above, we say that normal R-subgroup, normal

left R-subgroup and normal right R-subgroup instead of R-subgroup,

left R-subgroup and right R-subgroup, respectively. Note that normal

R-subgroups of R are not equivalent to ideals of R.

We consider the following notations: Given a near-ring R, R0 =

{a ∈ R | 0a = 0} which is called the zero symmetric part of R,

Rc = {a ∈ R | 0a = a} = {a ∈ R | ra = a, for all r ∈ R} which is

called the constant part of R, and Rd = {a ∈ R | a is distributive}

which is called the distributive part of R.

We note that R0 and Rc are subnear-rings of R, but Rd is not a

subnear-ring of R. A near-ring R with the extra axiom 0a = 0 for

all a ∈ R, that is, R = R0 is said to be zero symmetric, also, in

case R = Rc, R is called a constant near-ring, and in case R = Rd,

R is called a distributive near-ring. From the Pierce decomposition

theorem, we get

R = R0 ⊕ Rc

as additive groups. So every element a ∈ R has a unique representa-

tion of the form a = b + c, where b ∈ R0 and c ∈ Rc.

Let (G,+) be a group (not necessarily abelian). In the set

M(G) := {f | f : G −→ G}

of all the self maps of G, if we define the sum f + g of any two

mappings f, g in M(G) by the rule x(f + g) = xf + xg for all x ∈ G
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and the product f · g by the rule x(f · g) = (xf)g for all x ∈ G, then

(M(G),+, ·) becomes a near-ring. It is called the self map near-ring

of the group G. Also, if we define the set

M0(G) := {f ∈ M(G) | 0f = 0},

then (M0(G),+, ·) is a zero symmetric near-ring.

Let R and S be two near-rings. Then a mapping θ from R to

S is called a near-ring homomorphism if (i) (a + b)θ = aθ + bθ, (ii)

(ab)θ = aθbθ. We can replace homomorphism by momomorphism, epi-

morphism, isomorphism, endomorphism and automorphism, if these

terms have their usual meanings as for rings ([1]).

Let R be any near-ring and G an additive group. Then G is called

an R-group if there exists a near-ring homomorphism

θ : (R,+, ·) −→ (M(G),+, ·).

Such a homomorphism θ is called a representation of R on G, we write

that xr (right scalar multiplication in R) for x(rθ) for all x ∈ G and

r ∈ R. If R is unitary, then R-group G is called unitary. Thus an

R-group is an additive group G satisfying (i) x(a + b) = xa + xb, (ii)

x(ab) = (xa)b and (iii) x1 = x ( If R has a unity 1 ), for all x ∈ G

and a, b ∈ R. Evidently, every near-ring R can be given the structure

of an R-group (unitary if R is unitary) by right multiplication in R.

Moreover, every group G has a natural M(G)-group structure, from

the representation of M(G) on G given by applying the f ∈ M(G) to

the x ∈ G as a scalar multiplication xf .

A representation θ of R on G is called faithful if Kerθ = {0}. In

this case, also we say that G is a faithful R-group or R acts faithfully

on G.

For an R-group G, a subgroup T of G such that TR ⊂ T is called

an R-subgroup of G, a normal subgroup N of G such that NR ⊂ N
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is called a normal R-subgroup of G and an R-ideal of G is a normal

subgroup N of G such that (N + x)a − xa ⊂ N for all x ∈ G, a ∈ R.

Also, note that normal R-subgroups of G are not equivalent to an

R-ideals of R.

Let R be a near-ring and let G be an R-group. If there exists x

in G such that G = xR, that is, G = {xr | r ∈ R}, then G is called

a monogenic R-group and the element x is called a generator of G,

more specially, if G is monogenic and for each x ∈ G, xR = o or

xR = G, then G is called a strongly monogenic R-group. It is clearly

proved that G 6= 0 if and only if GR 6= 0 for any monogenic or strongly

monogenic R-group G (J.D.P. Meldrum [6] and G. Pilz [7]).

For the remainder concepts and results on near-rings, we refer to

J.D.P. Meldrum [6] and G. Pilz [7].

2. Some properties of faithful monogenic R-groups

A near-ring R is called distributively generated (briefly, D.G.) by S

if (R,+) = gp < S > where S is a semigroup of distributive elements

in R (this is motivated by the set of all distributive elements of R is

multiplicatively closed and contain the unity of R if it exists), and

gp < S > is a group generated by S, we denote it by (R,S). On the

other hand, the set of all distributive elements of M(G) are obviously

the semigroup End(G) of all endomorphisns of the group G under

composition. Here we denote that E(G) is the D.G. near-ring gener-

ated by End(G), that is, E(G) is D.G. subnear-ring of (M0(G),+, ·)

generated by End(G). It is said to be that E(G) is the endomorphism

near-ring of the group G.

Let (R,S) and (T,U) be D.G. near-rings. Then a near-ring homo-

morphism

θ : (R,S) −→ (T,U)

is called a D.G. near-ring homomorphism if Sθ ⊆ U . Note that a
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semigroup homomorphism θ : S −→ U is a D.G. near-ring homomor-

phism if it is a group homomorphism from (R,+) to (T,+) (C. G.

Lyons and J.D.P. Meldrum [3], [4]).

Let (R,S) be a D.G. near-ring. Then an additive group G is called

a D.G. (R,S)-group if there exists a D.G. near-ring homomorphism

θ : (R,S) −→ (E(G), End(G))

such that Sθ ⊆ End(G).

If we write that xr instead of x(rθ) for all x ∈ G and r ∈ R, then

an D.G. (R,S)-group is an additive group G satisfying the following

conditions:

x(rs) = (xr)s,

x(r + s) = xr + xs,

for all x ∈ G and all r, s ∈ R,

(x + y)s = xs + ys,

for all x, y ∈ G and all s ∈ S.

Such a homomorphism θ is called a D.G. representation of (R,S).

This D.G. representation is said to be faithful if Kerθ = {0}. In this

case, we say that G is called a faithful D.G. (R,S)-group.

Example 2.1. If R is a distributive near-ring with unity 1, then R

is a ring (see [7, 1.107]). Furthermore, if R is a distributive near-ring

with unity 1, then every D.G. (R,R)-group is a unitary R-module.

Proof. Let G be an D.G. (R,R)-group. Since G is unitary, x(2) =

x(1 + 1) = x + x, for all x ∈ G. Thus we have that

x + y + x + y = (x + y)(2) = x(2) + y(2) = x + x + y + y,
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for all x, y ∈ G. This implies that (G,+) is abelian. Since R = S, the

set of all distributive elements, (x + y)r = xr + yr, for all x, y ∈ G

and all r ∈ R. Hence G becomes a unitary R-module. �

Lemma 2.1. ([5]) Let (R,S) be a D.G. near-ring. Then all R-

subgroups and all R-homomorphic images of a D.G. (R,S)-group are

also D.G. (R,S)-groups.

Now, we consider that the substructures of R and G, also quotients

of substructure relations between them.

Let G be an R-group and K, K1 and K2 be subsets of G. Define

(K1 : K2) := {a ∈ R;K2a ⊂ K1}.

We abbreviate that for x ∈ G

({x} : K2) =: (x : K2).

Similarly for (K1 : x).

(0 : K) is called the annihilator of K, denoted it by A(K). We

note that G is a faithful R-group if A(G) = {0}, that is, (0 : G) = {0}.

Also, we see that from the previous concepts to elementwise, a

subgroup H of G such that xa ∈ H for all x ∈ H, a ∈ R, is an R-

subgroup of G, and an R-ideal of G is a normal subgroup N of G such

that

(x + g)a − ga ∈ N

for all g ∈ G,x ∈ N and a ∈ R (J.D.P. Meldrum [6]).

Lemma 2.2. Let G be an R-group and K1 and K2 subsets of G.

Then we have the following conditions:

(1) If K1 is a normal R-subgroup of G, then (K1 : K2) is a normal

right R- subgroup of a near-ring R.
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(2) If K1 is an R-subgroup of G, then (K1 : K2) is an right R-

subgroup.

(3) If K1 is an R-ideal of G and K2 is an R-subgroup of G, then

(K1 : K2) is a two-sided ideal of R.

Proof. (1) and (2) are proved by J.D.P. Meldrum [6]. Now, we

prove only (3) : Using the condition (1), (K1 : K2) is a normal

subgroup of R. Let a ∈ (K1 : K2) and r ∈ R. Then

K2(ra) = (K2r)a ⊂ K2a ⊂ K1,

so that ra ∈ (K1 : K2). Whence (K1 : K2) is a left ideal of R.

Next, let r1, r2 ∈ R and a ∈ (K1 : K2). Then

k{(a + r1)r2 − r1r2} = (ka + kr1)r2 − kr1r2 ∈ K1

for all k ∈ K2, since K2a ⊂ K1 and K1 is an ideal of G. Thus (K1 : K2)

is a right ideal of R. Therefore (K1 : K2) is a two-sided ideal of R. �

Corollary 2.3. ([6]) Let R be a near-ring and G an R-group.

(1) For any x ∈ G, (0 : x) is a right ideal of R.

(2) For any R-subgroup K of G, (0 : K) is a two-sided ideal of

R.

(3) For any subset K of G, (0 : K) =
⋂

x∈K
(0 : x).

Proposition 2.4. Let R be a near-ring and G an R-group. Then

we have the following conditions:

(1) A(G) is a two-sided ideal of R. Moreover G is a faithful

R/A(G)-group.

(2) For any x ∈ G, we get xR ∼= R/(0 : x) as R-groups.

Proof. (1) By Corollary 2.3 and Lemma 2.2, A(G) is a two-sided

ideal of R. We now make G an R/A(G)-group by defining, for r ∈
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R, r + A(G) ∈ R/A(G), the action x(r + A(G)) = xr. If r + A(G) =

r′ + A(G), then −r′ + r ∈ A(G) hence x(−r′ + r) = 0 for all x in G,

that is to say, xr = xr′ . This tells us that

x(r + A(G)) = xr = xr′ = x(r′ + A(G));

thus the action of R/A(G) on G has been shown to be well defined.

The verification of the structure of an R/A(G)-group is a routine

triviality. Finally, to see that G is a faithful R/A(G)-group, we note

that if x(r + A(G)) = 0 for all x ∈ G, then by the definition of

R/A(G)-group structure, we have xr = 0. Hence r ∈ A(G). This says

that only the zero element of R/A(G) annihilates all of G. Thus G is

a faithful R/A(G)-group.

(2) For any x ∈ G, clearly xR is an R-subgroup of G. The map

φ : R −→ xR defined by φ(r) = xr is an R-ephimorphism, so that

from the isomorphism theorem, since the kernel of φ is (0 : x), we

deduce that

xR ∼= R/(0 : x)

as R-groups. �

Corollary 2.5. Let G be a monogenic R-group with x as a gen-

erator. Then we have the following isomorphic relation.

G ∼= R/(0 : x).

Proposition 2.6. If R is a near-ring and G an R-group, then

R/A(G) is isomorphic to a subnear-ring of M(G).

Proof. Let a ∈ R. We define τa : G −→ G by xτa = xa for each

x ∈ G. Then τa is in M(G). Consider the mapping φ : R −→ M(G)

defined by φ(a) = τa. Then obviously, we see that

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b),
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that is, φ is a near-ring homomorphism from R to M(G).

Next, we must show that Kerφ = A(G) : Indeed, if a ∈ Kerφ,

then τa = 0, which implies that Ga = Gτa = 0, that is, a ∈ A(G). On

the other hand, if a ∈ A(G), then by the definition of A(G), Ga = 0

hence 0 = τa = φ(a), this implies that a ∈ Kerφ. Therefore from the

first isomorphism theorem on R− groups, the image of R is a near-

ring isomorphic to R/A(G). Consequently, R/A(G) is isomorphic to

a subnear-ring of M(G). �

Thus we obtain the important statement of the fact that if G is a

faithful R-group, then R is embedded in M(G), as in ring theory.

Corollary 2.7. If (R,S) is a D.G. near-ring, then every mono-

genic R-group is a D.G. (R,S)-group.

Proof. Let G be a monogenic R-group with x as a generator. Then

the map φ : r| −→ xr is an R-epimorphism from R to G as R−groups.

We see that by Corollary 2.5, G ∼= R/A(x), where A(x) = (0 : x) =

Kerφ. From Lemma 2.1, we see that G is a D.G. (R,S)−group. �

Proposition 2.8. Let G be a monogenic R-group with generator

x. Then we have the following properties:

(1) For any right ideal I of R, xI is an R-ideal of G.

(2) If I is a left R-subgroup of R and xI is an R-ideal of G, then

I is an ideal of R.

(3) If e is a right identity of R and if G is a faithful R-group,

then e is a two-sided identity of R.

Proof. (1) Let a ∈ G. Then there exists t ∈ R such that a = xt.

Thus for each xy ∈ xI, r ∈ R, and a ∈ G,

(a + xy)r − ar = (xt + xy)r − (xt)r = x(t + y)r − x(tr)

= x{(t + y)r − tr} ∈ xI
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It is easily showed that xI is an additive normal subgroup of G. There-

fore xI is an R-ideal of G.

(2) For any y ∈ I and a, b ∈ R, we obtain the following equality:

x{(y + a)b − ab} = x(y + a)b − x(ab) = (xy + xa)b − (xa)b) ∈ xI

Hence (y + a)b− ab ∈ xI. In this same way, we can show that I is an

additive normal subgroup of R. Consequently, I is an ideal of R.

(3) First, let e is a right identity of R and g = xt be any element in

G. Then we have the relation that

ge = (xt)e = x(te) = xt = g

Next, let r be any element of R and g be an arbitrary element in G.

Then one gets the following equality that

g(er − r) = g(er) + g(−r) = (ge)r − gr = gr − gr = 0

Thus (er − r) ∈ (0 : G) = A(G). Since G is faithful, above this

equality implies that er − r = 0, that is, er = r. Hence e is a

two-sided identity of R. �

Lemma 2.9. (Wielandt and Betsch [2]) If R is a zero symmetric

near-ring and A, B, K are R-ideals of an R-group G, then we have

the following two conditions:

(1) We get an additive abelian group:

G′ = [(A + K) ∩ (B + K)]/[(A ∩ B) + K]

and for any x, y ∈ G′, and r ∈ R, we have (x+y)r = xr+yr.

(2) We obtain a quotient ring R/(0 : G′).
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Proposition 2.10. Let G be a faithful monogenic R-group with

generator x, where R is a zero symmetric near-ring. If I and J are

right ideals of R and I ∩ J ⊆ (0 : x), then R is a ring.

Proof. From Proposition 2.4 (2), we have that

G = xR ∼= R/(0 : x) = [(I+(0 : x)∩J +(0 : x)]/[(I∩J)+(0 : x)] = G′

On the other hand, since G is faithful, by the definition, we see

that

(0 : G′) ∼= (0 : G) = A(G) = 0

Consequently, Lemma 2.9 implies that R is a ring. �

Lemma 2.11. ([7]) For an R-group G, we have the following:

(1) For any x in G, xR is an R-subgroup of G.

(2) For any R-subgroup A of G, we have that oR = oRc ⊆ A.

In Lemma 2.11 (2), oR is the smallest R-subgroup of G under all

R-subgroups of G, So throughout this paper, we will write that

oR = oRc =: Ω.

We note that if R is zero symmetric, then Ω = {o} =: o, and Ω = xRc

for all x ∈ G.

From Lemma 2.11 (2), we define the following concepts: An R-

group G is called simple if G has no non-trivial ideal, that is, G has

no ideals except o and G. Similarly, we can define simple near-ring as

ring case. Also, R-group G is called R-simple if G has no R-subgroups

except Ω and G.

Lemma 2.12. For an R-group G and A is a subgroup of G, we

have the following:

(1) A is an R-ideal of G if and only if A is an R0-ideal of G.
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(2) A is an R-subgroup of G if and only if A is an R0-subgroup

of G and Ω ⊆ A.

Proof. (1) Necessity is obvious. Suppose A is an R0-ideal of G. Let

a ∈ A, x ∈ G and r ∈ R. Then since R = R0 ⊕ Rc, we rewrite that

r = s + t, where s ∈ R0 and t ∈ Rc. Thus we have

(a+x)r −xr = (a+x)(s+ t)−x(s+ t) = (a+x)s+(a+x)t−xt−xs

Here, since t ∈ Rc, (a+x)t-xt=t-t=0 so that (a+x)r−xr = (a+x)s−

xs. Also since s ∈ R0 and A is an R0-ideal of G, (a + x)s − xs ∈ A,

that is (a + x)r − xr ∈ A. Consequently, A is an R-ideal of G.

(2) This statement can be proved as a similar proof of (1). �

Proposition 2.13. Let G be a monogenic R-group with generator

x. Then we have the following:

(1) If I is a left R-subgroup of R and xI is an R-ideal of G, then

(xI : x) is an ideal of R.

(2) If G is R0-simple, then either GR = o or G is strongly mono-

genic.

Proof. (1) For any y ∈ I and a, b ∈ R, we obtain the following

equality:

x{(y + a)b − ab} = x(y + a)b − x(ab) = (xy + xa)b − (xa)b) ∈ xI

Hence (y + a)b− ab ∈ (xI : x). In this way, we can show that (xI : x)

is an additive normal subgroup of R. Consequently, (xI : x) is an

ideal of R.

(2) Suppose that G is R0-simple and G = GR 6= o. Then G has no

R-subgroups except Ω = o and G. Let x ∈ G and xR 6= o. Then since

xR is an R-subgroup, moreover an R0-subgroup by Lemma 2.12 (2)

of G, G = xR. Hence G is strongly monogenic. �
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Proposition 2.14. Let (R,S) be a D,G. near-ring and (G,+) an

abelian group. If G is a faithful (R,S)-group, then R is a ring.

Proof. Let x ∈ G and r, s ∈ R. Then, since (G,+) is abelian,

x(r + s) = xr + xs = xs + xr = x(s + r).

Thus we get that x{(r + s) − (s + r)} = 0 for all x ∈ G, that is,

(r+ s)− (s+ r) ∈ Kerθ = (0 : G) = A(G), where θ : R −→ M(G) is a

representation of R on G. Since G is faithful (R,S)−group, that is, θ

is faithful, Kerθ = (0 : G) = {0}. Hence for all r, s ∈ R, r + s = s + r.

Consequently, (R,+) is an abelian group.

Next we must show that R satisfies the right distributive law. Ob-

viously, we note that for all r, r′ ∈ R, all s ∈ S and 0 ∈ R,

0s = 0, (−r)s = −(rs) = r(−s) and (r + r′)s = rs + r′s.

On the other hand, for all x, y ∈ G, all s ∈ S and 0 ∈ G,

0s = 0, (−x)s = −(xs) = x(−s) and (x + y)s = xs + ys.

Let x ∈ G and r, s, t ∈ R. Then the element t in R is represented

by

t = δ1s1 + δ2s2 + δ3s3 + · · · + δnsn,

where δi = 1, or −1 and si ∈ S for 1 ≤ i ≤ n. Thus, using the above

note and (G,+) is abelian, we have the following equalities:

x(r + s)t = (xr + xs)t = (xr + xs)(δ1s1 + δ2s2 + · · · + δnsn)

= (xr + xs)δ1s1 + (xr + xs)δ2s2 + · · · + (xr + xs)δnsn

= δ1(xr + xs)s1 + δ2(xr + xs)s2 + · · · + δn(xr + xs)sn
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= δ1(xrs1 + xss1) + δ2(xrs2 + xss2) + · · · + δn(xrsn + xssn)

= δ1xrs1 + δ1xss1 + δ2xrs2 + δ2xss2 + · · · + δnxrsn + δnxssn

= xrδ1s1 + xsδ1s1 + xrδ2s2 + xsδ2s2 + · · · + xrδnsn + xsδnsn

= xr(δ1s1 + δ2s2 + · · · + δnsn) + xs(δ1s1 + δ2s2 + · · · δnsn)

= xrt + xst = x(rt + st).

Thus we obtain that x{(r + s)t− (rt+ st)} = 0 for all x ∈ G, namely,

(r + s)t − (rt + st) ∈ (0 : G) = A(G).

Since G is faithful, A(G) = {0}. Applying the first part of this proof,

we see that (r+s)t = rt+st for all r, s, t ∈ R, consequently, R satisfies

the right distributive law. Hence R is a ring. �

As an immediate consequence of Proposition 2.14, we have the

following important corollary.

Corollary 2.15. Let (R,S) be an abelian D.G. near-ring. Then

R is a ring.
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