UNIVALENT HARMONIC EXTERIOR MAPPINGS

Sook Heui Jun*

Abstract

In this paper, we will show that the bounds for coefficients of harmonic, orientation-preserving, univalent mappings f defined on $\Delta=\{z:|z|>1\}$ with $f(\Delta)=\Delta$ are sharp by finding extremal functions.

1. Introduction

Consider the class Σ of all complex-valued, harmonic, orientationpreserving, univalent mappings f defined on $\Delta=\{z:|z|>1\}$, which are normalized at infinity by $f(\infty)=\infty([1])$. If $f \in \Sigma$ with $f(\Delta)=$ Δ, then f has a Poisson integral representation
$f(z)=\alpha z+\overline{\beta z}+A \log |z|-\frac{1}{2 \pi} \int_{0}^{2 \pi} R e\left[\frac{e^{i t}+z}{e^{i t}-z}\right]\left(e^{i \theta(t)}-\alpha e^{i t}-\bar{\beta} e^{-i t}\right) d t$ where θ is a nondecreasing continuous function on \mathbb{R} with $\theta(t+2 \pi)=$ $\theta(t)+2 \pi, 0 \leq|\beta|<|\alpha|$, and $|A| / 2 \leq|\alpha|+|\beta|([1,2])$. Since $\operatorname{Re}\left[\frac{e^{i t}+z}{e^{i t}-z}\right]=-1-\sum_{m=1}^{\infty}\left(\frac{e^{i m t}}{z^{m}}+\frac{e^{-i m t}}{\bar{z}^{m}}\right)$, we have

$$
\begin{equation*}
f(z)=\alpha z+\overline{\beta z}+A \log |z|+\sum_{m=0}^{\infty} \frac{a_{m}}{z^{m}}+\sum_{m=1}^{\infty} \frac{\bar{b}_{m}}{\bar{z}^{m}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i \theta(t)} d t \\
& a_{1}=-\bar{\beta}+\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i[t+\theta(t)]} d t, \quad \bar{b}_{1}=-\alpha+\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i[t-\theta(t)]} d t \\
& a_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i[m t+\theta(t)]} d t \quad \text { and } \quad \bar{b}_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i[m t-\theta(t)]} d t
\end{aligned}
$$

[^0]for $m \geq 2$. Thus we know that $\left|a_{m}\right| \leq \frac{1}{m},\left|b_{m}\right| \leq \frac{1}{m}$ for $m \geq 2$ ([2, Corollary 2.5]).

In this paper, we will show that the bounds $\left|b_{m}\right| \leq \frac{1}{m}$ are sharp for $m \geq 2$ by finding an extremal function for each m.

2. Extremal Functions

From now on $n \geq 2$ unless there is further mention. Consider the function $e^{i \theta_{n}(t)}$, where $\theta_{n}(t)=\left\{\begin{array}{ll}n t & \text { if } 0 \leq t \leq 2 \pi / n \\ 2 \pi & \text { if } 2 \pi / n \leq t \leq 2 \pi .\end{array}\right.$ Then $f(z)$ of the form (1) is a harmonic function in Δ and $f(\infty)=\infty$. And also we have

$$
a_{0}=1-\frac{1}{n}, \quad a_{m}= \begin{cases}-\bar{\beta}-\frac{i n\left(1-e^{i 2 \pi / n}\right)}{2 \pi(n+1)} & \text { if } m=1 \\ -\frac{i n\left(1-e^{i 2 \pi m / n}\right)}{2 \pi m(n+m)} & \text { if } m \geq 2\end{cases}
$$

and

$$
\bar{b}_{m}= \begin{cases}-\alpha+\frac{i n\left(1-e^{-i 2 \pi / n}\right)}{2 \pi(n-1)} & \text { if } m=1 \\ \frac{1}{n} & \text { if } m=n \\ \frac{i n\left(1-e^{-i 2 \pi m / n}\right)}{2 \pi m(n-m)} & \text { if } m \neq n, m \geq 2\end{cases}
$$

Thus we obtain

$$
\begin{align*}
f(z)= & \alpha z+\overline{\beta z}+A \log |z|+\left(1-\frac{1}{n}\right)-\frac{\bar{\beta}}{z}-\frac{\alpha}{\bar{z}} \tag{2}\\
& -\frac{i n}{2 \pi} \sum_{m=1}^{\infty} \frac{1-e^{i 2 \pi m / n}}{m(n+m) z^{m}}+\frac{i n}{2 \pi} \sum_{\substack{m=1 \\
m \neq n}}^{\infty} \frac{1-e^{-i 2 \pi m / n}}{m(n-m) \bar{z}^{m}}+\frac{1}{n \bar{z}^{n}}
\end{align*}
$$

and $b_{n}=\frac{1}{n}$.
In the remainder of this section we shall show that there exists a choice of α, β, and A so that f is univalent, hence an extremal function in Σ.

It is obvious that $\sum_{j=1}^{\infty} \frac{\zeta^{j}}{j}=-\log (1-\zeta)$ for $|\zeta|<1$. By replacing ζ by $1 / z$ and $e^{i 2 \pi / n} / z$, we obtain

$$
\begin{equation*}
\sum_{j=1}^{\infty} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}=\log \frac{z-e^{i 2 \pi / n}}{z-1}=L(z) \tag{3}
\end{equation*}
$$

for $|z|>1$. From (3), we have

$$
\begin{align*}
\sum_{m=1}^{\infty} \frac{1-e^{i 2 \pi m / n}}{m(n+m) z^{m}} & =\frac{1}{n}\left[L(z)-\sum_{m=1}^{\infty} \frac{1-e^{i 2 \pi m / n}}{(n+m) z^{m}}\right] \tag{4}\\
& =\frac{1}{n}\left[\left(1-z^{n}\right) L(z)+z^{n} \sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}\right]
\end{align*}
$$

by letting $j=n+m$ and then by applying (3) again. Similarly we also have

$$
\text { (5) } \sum_{\substack{m=1 \\ m \neq n}}^{\infty} \frac{1-e^{i 2 \pi m / n}}{m(n-m) z^{m}}=\frac{1}{n}\left[\left(1-\frac{1}{z^{n}}\right) L(z)+\frac{1}{z^{n}} \sum_{j=1}^{n-1} \frac{1-e^{-i 2 \pi j / n}}{j z^{-j}}\right] \text {. }
$$

Substitution of (4) and (5) into (2) leads to the representation

$$
\begin{align*}
f(z)= & \alpha z+\overline{\beta z}+A \log |z|+\left(1-\frac{1}{n}\right)-\frac{\bar{\beta}}{z}-\frac{\alpha}{\bar{z}}+\frac{1}{n \bar{z}^{n}} \tag{6}\\
& -\frac{i}{2 \pi}\left[\left(1-z^{n}\right) L(z)+z^{n} \sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}\right] \\
& +\frac{i}{2 \pi}\left[\left(1-\frac{1}{z^{n}}\right) L(z)+\frac{1}{z^{n}} \sum_{j=1}^{n-1} \frac{1-e^{-i 2 \pi j / n}}{j z^{-j}}\right]
\end{align*}
$$

Thus

$$
\left\{\begin{array}{l}
f_{z}=\alpha+\frac{A}{2 z}+\frac{\bar{\beta}}{z^{2}}+\frac{i n z^{n-1}}{2 \pi}\left[L(z)-\sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}\right] \tag{7}\\
\overline{f_{\bar{z}}}=\beta+\frac{\bar{A}}{2 z}+\frac{\bar{\alpha}}{z^{2}}+\frac{i n}{2 \pi z^{n+1}}\left[\sum_{j=1}^{n-1} \frac{1-e^{-i 2 \pi j / n}}{j z^{-j}}-L(z)\right]-\frac{1}{z^{n+1}}
\end{array}\right.
$$

Let $\xi_{n}=\left\{\begin{array}{ll}\frac{4 \cos (\pi / n)-1}{6 \cos (\pi / n)} & \text { for } n \geq 3 \\ 0 & \text { for } n=2 .\end{array}\right.$ Then $\frac{1}{3} \leq \xi_{n}<\frac{1}{2}$ for $n \geq 3$ and Lemma 2.1 is true for this ξ_{n}. We made this choice for ξ_{n} with
help of a computer. If we choose $\alpha=k e^{i(n-1) \pi / n}, \beta=k \xi_{n} e^{-i \pi / n}$, and $A=k$ in (6), then the necessary conditions $0 \leq|\beta|<|\alpha|$ and $|A| / 2 \leq|\alpha|+|\beta|$ for the mapping in Σ are satisfied for all $k>0$. Therefore, from now on we restrict α, β, and A to be of this form. In order to prove our main theorem, we need several lemmas. In Theorem 2.7, we are going to show for each $n \geq 2$ that there exist α, β, and A of the form above such that $f \in \Sigma$ with $b_{n}=1 / n$.

Lemma 2.1. Let $Y=2 \cos [(n-1) \pi / n-\theta(n-1)]+\cos n \theta+$ $2 \xi_{n} \cos [\pi / n-\theta(n+1)]$ for $0 \leq \theta \leq 2 \pi / n$. Then $Y>0$.

Proof. If $n=2$, then $Y \geq 1$ since $0 \leq \sin \theta \leq 1$. In case $n \geq 3$, let $n \theta=t$. Then $0 \leq t \leq 2 \pi$ and

$$
\begin{equation*}
Y=2 \cos [\pi-(\pi-t) / n-t]+\cos t+2 \xi_{n} \cos [(\pi-t) / n-t] \tag{8}
\end{equation*}
$$

Since $Y(2 \pi-t)=Y(t)$, we only need to show $Y>0$ for $0 \leq t \leq \pi$. We can rewrite (8) as follows

$$
\begin{aligned}
Y=2 \sin \frac{(2 n-1) t+\pi}{2 n} \sin \frac{\pi-t}{2 n} & +4 \xi_{n} \sin \frac{\pi-t}{n} \sin t \\
& +\left(2 \xi_{n}-1\right) \cos \frac{\pi+(n-1) t}{n}
\end{aligned}
$$

by using properties of trigonometric functions.
If $\frac{(n-2) \pi}{2(n-1)}<t \leq \pi$, then $\cos \frac{\pi+(n-1) t}{n}<0, \sin \frac{(2 n-1) t+\pi}{2 n} \sin \frac{\pi-t}{2 n} \geq 0$, and $\sin \frac{\pi-t}{n} \sin t \geq 0$. Thus $Y>0$ because $1 / 3 \leq \xi_{n} \leq 1 / 2$ for $n \geq 3$.

If $0 \leq t \leq \frac{(n-2) \pi}{2(n-1)}$, then $0 \leq \cos \frac{\pi+(n-1) t}{n} \leq \cos \frac{\pi}{n}, \sin \frac{\pi}{2 n} \leq$ $\sin \frac{(2 n-1) t+\pi}{2 n}, \sin \frac{\pi}{4(n-1)} \leq \sin \frac{\pi-t}{2 n}$, and $\sin \frac{\pi-t}{n} \sin t \geq 0$. Thus $Y \geq$ $2 \sin \frac{\pi}{2 n}\left[\sin \frac{\pi}{4(n-1)}-\frac{1}{3} \sin \frac{\pi}{2 n}\right]$ because $\xi_{n}=\frac{4 \cos (\pi / n)-1}{6 \cos (\pi / n)}$ for $n \geq 3$. Since $\sin \frac{\pi}{2 n}>0$ for $n \geq 3$ and $\sin \frac{\pi}{4(n-1)}-\frac{1}{3} \sin \frac{\pi}{2 n} \geq \sin \frac{\pi}{4(n-1)}-\frac{\pi}{6 n}$, it is enough to show that $\sin \frac{\pi}{4(n-1)}-\frac{\pi}{6 n}$ is positive. Let $x=\frac{\pi}{4(n-1)}$, then $0<x \leq \frac{\pi}{8}$ and $\sin \frac{\pi}{4(n-1)}-\frac{\pi}{6 n}=\sin x-\frac{2 \pi x}{3(\pi+4 x)}$, say $g(x)$. Since $g(0)=0, g\left(\frac{\pi}{8}\right)>0$, and $g^{\prime}(x)>0$, we have $g(x)>0$ for $0<x \leq \frac{\pi}{8}$. Therefore $\sin \frac{\pi}{4(n-1)}-\frac{\pi}{6 n}>0$ for $n \geq 3$. This implies that $Y>0$ for $0 \leq t \leq \frac{(n-2) \pi}{2(n-1)}$.

LEMMA 2.2. Let $\zeta=H(z)=\frac{z-e^{i 2 \pi / n}}{z-1}$ for $|z| \geq 1$. Then the image of $|z| \geq 1$ is the half plane $\pi / n-\pi \leq \arg \zeta \leq \pi / n$ and $\arg H\left(e^{i \theta}\right)=$ $\begin{cases}\pi / n & \text { if } 2 \pi / n<\theta<2 \pi \\ \pi / n-\pi & \text { if } 0<\theta<2 \pi / n\end{cases}$

Proof. The proof is elementary. We omit it.
Lemma 2.3. Let $L(z)=\log \frac{z-e^{i 2 \pi / n}}{z-1}=a(z)+i b(z)$, and $z=r e^{i \theta}$ $(r \geq 1)$.
Then $\begin{cases}a\left(r e^{i \theta}\right)<0 & \text { if } \pi / n<\theta<\pi+\pi / n \\ a\left(r e^{i \theta}\right)=0 & \text { if } \theta=\pi / n, \pi+\pi / n \\ a\left(r e^{i \theta}\right)>0 & \text { if } 0 \leq \theta<\pi / n, \pi+\pi / n<\theta \leq 2 \pi .\end{cases}$
Proof. In a straight-forward manner, one analyzes the situation when $\left|\frac{z-e^{i 2 \pi / n}}{z-1}\right|$ is less than 1 , equal to 1 , and larger than one.

In the following lemma, we compare derivatives on $|z|=1$.
Lemma 2.4. Let $z=e^{i \theta}(0 \leq \theta<2 \pi)$. Then function (6) satisfies $\left|f_{z}\right|=\left|f_{\bar{z}}\right|$ for $2 \pi / n<\theta<2 \pi$, and if $0<\theta<2 \pi / n$, then $\left|f_{\bar{z}}\right|<\left|f_{z}\right|$ for all k sufficiently large.

Proof. From (7), we have

$$
\begin{aligned}
& \left|f_{z}\right|=\frac{n}{2 \pi}\left|\frac{2 \pi}{i n z^{n-1}}\left(\alpha+\frac{A}{2 z}+\frac{\bar{\beta}}{z^{2}}\right)+L(z)-\sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}\right| \\
& \left|f_{\bar{z}}\right|=\frac{n}{2 \pi} \left\lvert\, \frac{2 \pi z^{n+1}}{i n}\left(\left.\beta+\frac{\bar{A}}{2 z}+\frac{\bar{\alpha}}{z^{2}}-\frac{1}{z^{n+1}}+\sum_{j=1}^{n-1} \frac{z^{j}\left(1-e^{-i 2 \pi j / n}\right)}{j}-L(z) \right\rvert\, .\right.\right.
\end{aligned}
$$

Since $z \bar{z}=1$, we have

$$
\begin{aligned}
\left|f_{\bar{z}}\right| & =\frac{n}{2 \pi}\left|\frac{2 \pi}{i n \bar{z}^{n+1}}\left(\beta+\frac{\overline{A z}}{2}+\overline{\alpha z^{2}}-\bar{z}^{n+1}\right)+\sum_{j=1}^{n-1} \frac{1-e^{-i 2 \pi j / n}}{j \bar{z}^{j}}-L(z)\right| \\
& =\frac{n}{2 \pi}\left|\frac{2 \pi}{i n z^{n-1}}\left(\frac{\bar{\beta}}{z^{2}}+\frac{A}{2 z}+\alpha-z^{n-1}\right)-\sum_{j=1}^{n-1} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}+\overline{L(z)}\right| .
\end{aligned}
$$

Let $\frac{2 \pi}{i n z^{n-1}}\left(\alpha+\frac{A}{2 z}+\frac{\bar{\beta}}{z^{2}}\right)-\sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}=K(z)=c(z)+i d(z)$. Then

$$
\begin{aligned}
& \left|f_{z}\right|=\frac{n}{2 \pi}|K+L|=\frac{n}{2 \pi}|(c+a)+i(d+b)| \text { and } \\
& \left|f_{\bar{z}}\right|=\frac{n}{2 \pi}\left|K+\bar{L}-\frac{2 \pi}{i n}\right|=\frac{n}{2 \pi}\left|(c+a)+i\left(d+\frac{2 \pi}{n}-b\right)\right| .
\end{aligned}
$$

From these, we have $\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}=\frac{n^{2}}{\pi^{2}}\left(d+\frac{\pi}{n}\right)\left(b-\frac{\pi}{n}\right)$. By Lemma 2.2, we know that

$$
b\left(e^{i \theta}\right)= \begin{cases}\pi / n & \text { if } 2 \pi / n<\theta<2 \pi \\ \pi / n-\pi & \text { if } 0<\theta<2 \pi / n\end{cases}
$$

Therefore,

$$
\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}= \begin{cases}0 & \text { if } \frac{2 \pi}{n}<\theta<2 \pi \tag{9}\\ -\frac{n^{2}}{\pi}\left(d+\frac{\pi}{n}\right) & \text { if } 0<\theta<\frac{2 \pi}{n}\end{cases}
$$

Now for $0<\theta<2 \pi / n$, we want to show that $\left|f_{\bar{z}}\right|<\left|f_{z}\right|$ for all k sufficiently large. Since $\alpha=k e^{i(n-1) \pi / n}, \quad \beta=k \xi_{n} e^{-i \pi / n}$, and $A=k$, we have

$$
\begin{aligned}
& d=-\frac{\pi k}{n}\left\{2 \cos (n-1)(\pi / n-\theta)+\cos n \theta+2 \xi_{n} \cos [\pi / n-(n+1) \theta]\right\} \\
&+\sum_{j=1}^{n-1} \frac{\sin \theta j+\sin \left(\frac{2 \pi j}{n}-\theta j\right)}{j}
\end{aligned}
$$

By using the notation of Lemma 2.1, we have

$$
d=-\frac{\pi k}{n} Y+\sum_{j=1}^{n-1} \frac{\sin \theta j+\sin (2 \pi / n-\theta) j}{j}
$$

By substituting d into (9), we have

$$
\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}=n k Y-\frac{n^{2}}{\pi} \sum_{j=1}^{n-1} \frac{\sin \theta j+\sin (2 \pi / n-\theta) j}{j}-n
$$

From Lemma 2.1, we know that $C=\min _{0 \leq \theta \leq 2 \pi / n} Y>0$. Thus for $0<\theta<2 \pi / n$,

$$
\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2} \geq n\left[k C-\frac{n}{\pi} \sum_{j=1}^{n-1} \frac{\sin \theta j+\sin (2 \pi / n-\theta) j}{j}-1\right]
$$

Since $\frac{n}{\pi} \sum_{j=1}^{n-1} \frac{\sin \theta j+\sin (2 \pi / n-\theta) j}{j}+1$ is bounded, there exists $M_{n}>0$ such that $\left|\frac{n}{\pi} \sum_{j=1}^{n-1} \frac{\sin \theta j+\sin (2 \pi / n-\theta) j}{j}+1\right| \leq M_{n}$. Therefore $\left|f_{z}\right|^{2}-$ $\left|f_{\bar{z}}\right|^{2} \geq n\left(k C-M_{n}\right)$. Choose k such that $k>M_{n} / C$. Then $\left|f_{z}\right|^{2}-$ $\left|f_{\bar{z}}\right|^{2}>0$, that is, $\left|f_{z}\right|>\left|f_{\bar{z}}\right|$.

Lemma 2.5. On $E=\left\{z:|z| \geq 1, z \neq 1, z \neq e^{i 2 \pi / n}\right\}$, we have $f_{z} \neq 0$ for all k sufficiently large.

Proof. Let $F=k\left(-e^{-i \pi / n}+\frac{1}{2 z}+\frac{\xi_{n} e^{i \pi / n}}{z^{2}}\right)$, and let $S=\frac{i n z^{n-1}}{2 \pi} \sum_{j=n+1}^{\infty} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}$. Then $f_{z}=F+S$ by applying (3).

Part I: Let $z=r e^{i \theta}$. Then we have $|S| \leq \frac{n r^{n-1}}{\pi} \sum_{j=n+1}^{\infty} \frac{1}{j r^{j}}<$ $\frac{n}{(n+1) \pi r(r-1)}$ for $r>1$ and

$$
\begin{equation*}
|F| \geq k\left(1-\frac{1}{2 r}-\frac{\xi_{n}}{r^{2}}\right) \geq k\left(\frac{1}{2}-\xi_{n}\right) \text { for } r \geq 1 \tag{10}
\end{equation*}
$$

Thus $\left|f_{z}\right|>k\left(\frac{1}{2}-\xi_{n}\right)-\frac{n}{(n+1) \pi r(r-1)}$ for $r>1$. If $r \geq 2$, then $\left|f_{z}\right|>0$ for all $k \geq \frac{n}{(n+1) \pi\left(1-2 \xi_{n}\right)}$.

Part II: Let $\tilde{F}(z)=\frac{F}{k}, \Theta_{1}=\{w: \operatorname{Re} w>0, \operatorname{Im} w>0\}, \Theta_{2}=$ $\{w: \operatorname{Re} w<0, \operatorname{Im} w>0\}, \Theta_{3}=\{w: \operatorname{Re} w<0, \operatorname{Im} w<0\}$, and $\Theta_{4}=\{w: \operatorname{Re} w>0, \operatorname{Im} w<0\}$. Then $\tilde{F}(1) \in \Theta_{1}, \tilde{F}\left(e^{i 2 \pi / n}\right) \in \Theta_{2}$ for $n=2,3$, and $\tilde{F}\left(e^{i 2 \pi / n}\right) \in \Theta_{3}$ for $n \geq 4$ since $\xi_{n}= \begin{cases}\frac{4 \cos (\pi / n)-1}{6 \cos (\pi / n)} & \text { if } n \geq 3 \\ 0 & \text { if } n=2 .\end{cases}$
Choose $\epsilon\left(0<\epsilon<\frac{\pi}{2 n}\right)$ such that $\{w:|\tilde{F}(1)-w|<2 \epsilon\} \subset \Theta_{1}$ and $\left\{w:\left|\tilde{F}\left(e^{i 2 \pi / n}\right)-w\right|<2 \epsilon\right\} \subset \Theta_{2}$ for $n=2,3$, and $\left\{w: \mid \tilde{F}\left(e^{i 2 \pi / n}\right)-\right.$ $w \mid<2 \epsilon\} \subset \Theta_{3}$ for $n \geq 4$. Since \tilde{F} is continuous at $z=1, e^{i 2 \pi / n}$, there exists $\delta>0$ for which $|\tilde{F}(z)-\tilde{F}(1)|<\epsilon$ if $|z-1|<\delta$ and $\left|\tilde{F}(z)-\tilde{F}\left(e^{i 2 \pi / n}\right)\right|<\epsilon$ if $\left|z-e^{i 2 \pi / n}\right|<\delta$, and $\{z:|z-1|<\delta\} \cap\{z:$ $\left.\left|z-e^{i 2 \pi / n}\right|<\delta\right\}=\phi$. Thus we have the following facts:
(11) i) For $|z-1|<\delta$, we have $\operatorname{Re} \tilde{F}>\epsilon / 2$ and $\operatorname{Im} \tilde{F}>\epsilon / 2$.
(12)
ii) If $n=2,3$, then $\operatorname{Re} \tilde{F}<-\epsilon / 2$ and $\operatorname{Im} \tilde{F}>\epsilon / 2$ for $\left|z-e^{i 2 \pi / n}\right|<\delta$.
iii) If $n \geq 4$, then $\operatorname{Re} \tilde{F}<-\epsilon / 2$ and $\operatorname{Im} \tilde{F}<-\epsilon / 2$ for $\left|z-e^{i 2 \pi / n}\right|<\delta$.

Now consider $L(z)=\log \frac{z-e^{i 2 \pi / n}}{z-1}$. Then by Lemmas 2.2 and 2.3, we know that $\lim _{z \rightarrow 1} a(z)=\infty, \lim _{z \rightarrow e^{i 2 \pi / n}} a(z)=-\infty$, and $L(|z| \geq$ 1) $=\{w: \pi / n-\pi \leq \operatorname{Im} w \leq \pi / n\}$. For $M=\frac{(n-1) \pi}{n \tan \epsilon},|z| \geq 1$, there is a $\delta_{1}\left(0<\delta_{1} \leq \delta\right)$ for which $a(z)>M$ if $|z-1|<\delta_{1}$ and $a(z)<-M$ if $\left|z-e^{i 2 \pi / n}\right|<\delta_{1}$. Choose δ_{0} small enough that
i) $\delta_{0}<\delta_{1}$,
ii) $z=r e^{i \theta} \in\left\{z:|z-1|<\delta_{0},|z| \geq 1\right\}=Q_{1} \Rightarrow 0 \leq \theta<\frac{\pi}{2 n}$

$$
\text { or } 2 \pi-\frac{\pi}{2 n}<\theta \leq 2 \pi
$$

iii) $z=r e^{i \theta} \in\left\{z:\left|z-e^{i 2 \pi / n}\right|<\delta_{0},|z| \geq 1\right\}=Q_{2} \Rightarrow \frac{3 \pi}{2 n}<\theta<\frac{5 \pi}{2 n}$.

Then $\left|\arg \left[\frac{i n L(z)}{2 \pi}\right]-\frac{\pi}{2}\right|<\epsilon$ for $z \in Q_{1}$, and $\left|\arg \left[\frac{i n L(z)}{2 \pi}\right]-\frac{3 \pi}{2}\right|<$ ϵ for $z \in Q_{2}$. This implies that

$$
\begin{equation*}
\frac{i n z^{n-1}}{2 \pi} L(z) \in\{w: \operatorname{Im} w>0\} \quad \text { for } z \in Q_{1} \tag{14}
\end{equation*}
$$

and for $z \in Q_{2}$,

$$
\begin{equation*}
\frac{i n z^{n-1}}{2 \pi} L(z) \notin \bar{\Theta}_{3} \cup \bar{\Theta}_{4} \quad \text { if } n=2 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{i n z^{n-1}}{2 \pi} L(z) \notin \bar{\Theta}_{4} \quad \text { if } n=3 \tag{16}
\end{equation*}
$$

$$
\frac{i n z^{n-1}}{2 \pi} L(z) \notin \bar{\Theta}_{1} \quad \text { if } n \geq 4
$$

The proof above is elementary. So we omit it.
By substituting $L(z)$ and $\tilde{F}(z)$ into (7), we have

$$
f_{z}=k \tilde{F}+\frac{i n z^{n-1}}{2 \pi} L-\frac{i n z^{n-1}}{2 \pi} \sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}} .
$$

Since $\frac{-i n z^{n-1}}{2 \pi} \sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}$ is a polynomial of degree $n-2$, there exists $M_{0}>0$ such that $\left|-\frac{i n z^{n-1}}{2 \pi} \sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}\right| \leq M_{0}$ on $\Theta=$ $Q_{1} \cup Q_{2}$. So on Θ, We have

$$
\begin{equation*}
\left|f_{z}\right| \geq\left|k \tilde{F}+\frac{i n z^{n-1}}{2 \pi} L\right|-M_{0} \tag{18}
\end{equation*}
$$

If $z \in Q_{1}$, then from (11) and (14), we obtain

$$
\begin{equation*}
\left|f_{z}\right| \geq\left|k \tilde{F}+\frac{i n z^{n-1}}{2 \pi} L\right|-M_{0} \geq \operatorname{Im}\left[k \tilde{F}+\frac{i n z^{n-1}}{2 \pi} L\right]-M_{0}>\frac{k \epsilon}{2}-M_{0} \tag{19}
\end{equation*}
$$

Similarly, when $z \in Q_{2}$, apply (12) and (15), (12) and (16), (13) and (17) to (18), then we also obtain

$$
\begin{equation*}
\left|f_{z}\right|>\frac{k \epsilon}{2}-M_{0} \tag{20}
\end{equation*}
$$

From (19) and (20), we have $\left|f_{z}\right|>k \epsilon / 2-M_{0}$ on Θ. Therefore $f_{z} \neq 0$ on Θ for $k \geq 2 M_{0} / \epsilon$.

Part III: Let $\bar{U}=\{z: 1 \leq|z| \leq 2\} \backslash \Theta$. Then there exists $M_{1}>0$ such that $|L(z)| \leq M_{1}$. By applying (3) to S, we have

$$
S=\frac{i n z^{n-1}}{2 \pi}\left(L(z)-\sum_{j=1}^{n} \frac{1-e^{i 2 \pi j / n}}{j z^{j}}\right) .
$$

Thus
$|S| \leq \frac{n|z|^{n-1}}{2 \pi}\left(M_{1}+\sum_{j=1}^{n-1} \frac{2}{j|z|^{j}}\right) \leq \frac{n M_{1} 2^{n-2}}{\pi}+\frac{n}{\pi} \sum_{j=1}^{n-1} \frac{2^{n-1-j}}{j}=R$ on $\bar{\cup}$.
(10) implies that $\left|f_{z}\right| \geq k\left(1 / 2-\xi_{n}\right)-R$ on \bar{U}. If $k>2 R /\left(1-2 \xi_{n}\right)$, then $\left|f_{z}\right|>0$ on \bar{U}.

Part I, II, and III imply that for all

$$
k>\max \left\{\frac{n}{(n+1) \pi\left(1-2 \xi_{n}\right)}, \frac{2 M_{0}}{\epsilon}, \frac{2 R}{1-2 \xi_{n}}\right\}
$$

$f_{z} \neq 0$ on E.
Lemma 2.6. The function $f(z)$ of the form (6) with $\alpha=k e^{i(n-1) \pi / n}$, $\beta=k \xi_{n} e^{-i \pi / n}$, and $A=k$ is locally univalent in Δ for all k sufficiently large.

Proof. By Lemma 2.4, there exists k_{1} such that $\left|f_{z}\right| \geq\left|f_{\bar{z}}\right|$ on $B=$ $\left\{z:|z|=1, z \neq 1, z \neq e^{i 2 \pi / n}\right\}$ for all $k>k_{1}$. By Lemma 2.5, there exists k_{2} such that $f_{z} \neq 0$ on $E=\left\{z:|z| \geq 1, z \neq 1, z \neq e^{i 2 \pi / n}\right\}$ for all $k>k_{2}$. Let $k_{f}=\max \left\{k_{1}, k_{2}\right\}$. Then for all $k>k_{f}$, we have $\left|f_{z}\right| \geq\left|f_{\bar{z}}\right|$ for $z \in B$ and $f_{z} \neq 0$ for $z \in E$.

Let $\tilde{a}(z)=\overline{f_{\bar{z}}} / f_{z}$, then $\tilde{a}(z)$ is analytic on Δ and $|\tilde{a}(z)| \leq 1$ on B.

$$
|\tilde{a}(z)|=\left|\frac{\overline{f_{\bar{z}}}}{f_{z}}\right|=\left|\frac{\text { Regular terms } / L(z)-\frac{i n}{2 \pi z^{n+1}}}{\text { Regular terms } / L(z)+\frac{i n z^{n-1}}{2 \pi}}\right| \rightarrow 1
$$

as $z \rightarrow 1$ or $z \rightarrow e^{i 2 \pi / n}$. By the Maximum Principle, we have $|\tilde{a}(z)| \leq 1$ in Δ. If $|\tilde{a}|=1$ at some point in Δ, then $|\tilde{a}| \equiv 1$; but $|\tilde{a}(\infty)|=$ $|\beta / \alpha|=\xi_{n}<1 / 2$. This implies that $|\tilde{a}|<1$ in Δ. Thus $\left|f_{z}\right|>\left|\overline{f_{\bar{z}}}\right|$ in Δ. Therefore f is locally univalent in Δ, and at ∞, too.

Theorem 2.7. For each $n \geq 2$ there exists a harmonic, orientationpreserving, univalent mapping of Δ onto itself with the Fourier expansion (1) such that $b_{n}=\frac{1}{n}$.

Proof. For each n, take (6) with $\alpha=k e^{i(n-1) \pi / n}, \beta=k \xi_{n} e^{-i \pi / n}$, and $A=k$ where $\xi_{n}=\left\{\begin{array}{ll}\frac{4 \cos (\pi / n)-1}{6 \cos (\pi / n)} & \text { if } n \geq 3 \\ 0 & \text { if } n=2 .\end{array}\right.$ Then there exists $k>0$ such that f is local homeomorphism on $\Delta \cup\{\infty\}$ and the Jacobian of $f, J_{f}=\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}$, is positive on $\Gamma=\left\{z=e^{i \theta}: 0<\theta<\right.$ $2 \pi / n\}$ by Lemma 2.6 and Lemma 2.4. f is a local homeomorphism in
full neighborhood of each point p of Γ to some neighborhood of $f(p)$ since $J_{f}>0$ on Γ.

Now define the reflection $G(z)=\left\{\begin{array}{ll}f(z) & \text { if }|z| \geq 1 \\ \frac{1}{f(1 / \bar{z})} & \text { if }|z|<1 .\end{array}\right.$ Then G is local homeomorphism at each point of $S^{2} \backslash \tilde{\Gamma}$ where S^{2} is the Riemann sphere and $\tilde{\Gamma}=\left\{z=e^{i \theta}: 2 \pi / n \leq \theta \leq 2 \pi\right\}$. It is continuous on S^{2}. However, G is constant on $\tilde{\Gamma}$. Now identify points of $\tilde{\Gamma}$ and call this element b. We obtain a new function F on a new domain, which is topologically a sphere $S^{2} . F$ is a homeomorphism since F is a local homeomorphism on $S^{2} \backslash\{b\}$ and continuous on S^{2}. Hence G is a homeomorphism on $S^{2} \backslash \tilde{\Gamma}$. Therefore, $\left.G\right|_{\Delta}=f$ is a homeomorphism.

References

1. W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
2. S.H. Jun Univalent functions on $\Delta=\{z:|z|>1\}$, Kangweon-Kyungki Math. Jour. 11 (2003), (to appear).

*

Department of Mathematics
Seoul Women's University
Kongnung 2-dong, Nowon-Gu, Seoul, 139-774, Korea
E-mail: shjun@swu.ac.kr

[^0]: This work was supported by the research fund of Nat. Sci. Inst., Seoul Women's University, 2002.

 Received by the editors on October 23, 2003.
 2000 Mathematics Subject Classifications: Primary 30C15, 30C50.
 Key words and phrases: harmonic, univalent function.

