
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 16, No. 2, December 2003

HYERS–ULAM–RASSIAS STABILITY OF A

FUNCTIONAL EQUATION IN THREE VARIABLES

Sang Han Lee* and Chun-Gil Park**

Abstract. In this paper, we solve the following functional equation

af

(

x + y + z

b

)

+ af

(

x − y + z

b

)

+ af

(

x + y − z

b

)

+ af

(

−x + y + z

b

)

= cf(x) + cf(y) + cf(z),

and prove the Hyers-Ulam-Rassias stability of the functional equation

as given above.

1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respec-

tively. Hyers [4] showed that if ǫ > 0 and f : X → Y such that

‖f(x + y) − f(x) − f(y)‖ ≤ ǫ

for all x, y ∈ X, then there exists a unique additive mapping T : X →

Y such that

‖f(x) − T (x)‖ ≤ ǫ

for all x ∈ X.
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Consider f : X → Y to be a mapping such that f(tx) is continuous

in t ∈ R for each fixed x ∈ X. Assume that there exist constants ǫ ≥ 0

and p ∈ [0, 1) such that

‖f(x + y) − f(x) − f(y)‖ ≤ ǫ(||x||p + ||y||p)

for all x, y ∈ X. Th.M. Rassias [6] showed that there exists a unique

R-linear mapping T : X → Y such that

‖f(x) − T (x)‖ ≤
2ǫ

2 − 2p
||x||p

for all x ∈ X. Găvruta [3] generalized the Rassias’ result.

A square norm on an inner product space satisfies the important

parallelogram equality ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2. The

functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution

of the quadratic functional equation is said to be a quadratic function.

A Hyers-Ulam stability problem for the quadratic functional equation

was proved by Skof [7] for mappings f : X → Y , where X is a normed

space and Y is a Banach space. Cholewa [1] noticed that the theorem

of Skof is still true if the relevant domain X is replaced by an Abelian

group. In [2], Czerwik proved the Hyers-Ulam-Rassias stability of the

quadratic functional equation.

In [5], the authors solved the quadratic type functional equation

a2f(
x + y + z

a
) + a2f(

x − y + z

a
) + a2f(

x + y − z

a
)

+ a2f(
−x + y + z

a
) = 4f(x) + 4f(y) + 4f(z),
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and proved the generalized Hyers-Ulam-Rassias stability of the quadratic

type functional equation.

Throughout this paper, assume that a, b, c are positive real num-

bers, and that X and Y are real vector spaces.

In this paper, we solve the following functional equation

af(
x + y + z

b
) + af(

x − y + z

b
) + af(

x + y − z

b
)

+ af(
−x + y + z

b
) = cf(x) + cf(y) + cf(z)(1.i)

for all x, y, z ∈ X, and prove the generalized Hyers-Ulam-Rassias

stability of the functional equation as given above.

2. Solutions of a functional equation in three variables

Lemma 1. If an even mapping f : X → Y satisfies (1.i) for all

x, y, z ∈ X and f(0) = 0, then f is quadratic.

Proof. Note that f(−x) = f(x) for all x ∈ X since f is an even

mapping. Putting y = z = 0 in (1.i), we have

(2.1) 4af(
x

b
) = cf(x)

for all x ∈ X. Using (2.1) and (1.i), we get

f(x + y + z) + f(x − y + z) + f(x + y − z) + f(−x + y + z)

= 4f(x) + 4f(y) + 4f(z)(2.2)

for all x, y, z ∈ X. Putting z = 0 in (2.2), we deduce f(x+ y)+ f(x−

y) = 2f(x) + 2f(y) for all x, y ∈ X. So f is quadratic. �

Lemma 2. If an odd mapping f : X → Y satisfies (1.i) for all

x, y, z ∈ X, then f is additive.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since

f is an odd mapping. Putting y = z = 0 in (1.i), we have

(2.3) 2af(
x

b
) = cf(x)



14 S. LEE AND C. PARK

for all x ∈ X. Using (2.3) and (1.i), we get

f(x + y + z) + f(x − y + z) + f(x + y − z) + f(−x + y + z)

= 2f(x) + 2f(y) + 2f(z)(2.4)

for all x, y, z ∈ X. Putting z = 0 in (2.4), we deduce f(x + y) =

f(x) + f(y) for all x, y ∈ X. So f is additive. �

Theorem 3. If a mapping f : X → Y satisfies (1.i) for all x, y, z ∈

X and f(0) = 0, then there exist an additive mapping A : X → Y

and a quadratic mapping Q : X → Y such that

f(x) = Q(x) + A(x)

for all x ∈ X.

Proof. Let A(x) := f(x)−f(−x)
2 for all x ∈ X. Then A(−x) =

−A(x) and A satisfies (1.i) for all x, y, z ∈ X. By Lemma 2, A is

additive.

Let Q(x) := f(x)+f(−x)
2 for all x ∈ X. Then Q(0) = 0, Q(−x) =

Q(x) and Q satisfies (1.i) for all x, y, z ∈ X. By Lemma 1, Q is

quadratic. Clearly, we have f(x) = Q(x) + A(x) for all x ∈ X. �

3. Stability of a functional equation in three variables

Let R+ denote the set of nonnegative real numbers. Recall that a

function H : R+×R+×R+ → R+ is homogeneous of degree p > 0 if it

satisfies H(tu, tv, tw) = tpH(u, v, w) for all nonnegative real numbers

t, u, v, w.

Throughout this section, assume that X and Y are a real normed

vector space with norm || · || and a real Banach space with norm ‖ · ‖,

respectively, and that H is homogeneous of degree p. Given a mapping

f : X → Y , we set

Df(x, y, z) :=af(
x + y + z

b
) + af(

x − y + z

b
) + af(

x + y − z

b
)

+ af(
−x + y + z

b
) − cf(x) − cf(y) − cf(z)
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for all x, y, z ∈ X.

Theorem 4. Assume that δ ≥ 0, p ∈ (0,∞) \ {1} and δ = 0 when

p > 1. Let an odd mapping f : X → Y satisfy

(3.1) ‖Df(x, y, z)‖ ≤ δ + H(||x||, ||y||, ||z||)

for all x, y, z ∈ X. Then there exists a unique additive mapping

A : X → Y such that

(3.2) ‖f(x) − A(x)‖ ≤
2

c
δ +

1

|2 − 2p|
h(x)

for all x ∈ X, where h(x) = 1
4(H(||x||, ||x||, 0) + H(||2x||, 0, 0)).

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since

f is an odd mapping. Putting y = z = 0 in (3.1) and then replacing

x by 2x, we have

(3.3) ‖af(
2x

b
) −

c

2
f(2x)‖ ≤

1

2
(δ + H(||2x||, 0, 0))

for all x ∈ X. Putting y = x and z = 0 in (3.1), we have

(3.4) ‖af(
2x

b
) − cf(x)‖ ≤

1

2
(δ + H(||x||, ||x||, 0))

for all x ∈ X. By (3.3) and (3.4), we have

(3.5) ‖f(2x) − 2f(x)‖ ≤
2

c
δ + h(x)

for all x ∈ X, where h(x) = 1
c
(H(||x||, ||x||, 0) + H(||2x||, 0, 0)).

We divide the remaining proof by two cases.

(I) The case 0 < p < 1. By (3.5), we have

(3.6) ‖f(x) −
f(2x)

2
‖ ≤

1

c
δ +

1

2
h(x)
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for all x ∈ X. Using (3.6), we have

‖
f(2nx)

2n
−

f(2n+1x)

2n+1
‖ =

1

2n
‖f(2nx) −

f(2 · 2nx)

2
‖

≤
1

2n c
δ +

1

2
2(p−1)nh(x)(3.7)

for all x ∈ X and all positive integers n. By (3.7), we have

(3.8) ‖
f(2mx)

2m
−

f(2nx)

2n
‖ ≤

n−1
∑

k=m

1

2k c
δ +

n−1
∑

k=m

1

2
2(p−1)kh(x)

for all x ∈ X and all positive integers m and n with m < n. This

shows that the sequence { f(2nx)
2n

} is a Cauchy sequence for all x ∈ X.

Since Y is complete, the sequence { f(2n

x)
2n

} converges for all x ∈ X.

So we can define a mapping A : X → Y by

A(x) := lim
n→∞

f(2nx)

2n

for all x ∈ X. Since f(−x) = −f(x) for all x ∈ X, we have A(−x) =

−A(x) for all x ∈ X. Also, we get

‖DA(x, y, z)‖ = lim
n→∞

1

2n
‖Df(2nx, 2ny, 2nz)‖

≤ lim
n→∞

1

2n
δ + 2(p−1)nH(||x||, ||y||, ||z||) = 0

for all x, y, z ∈ X. By Lemma 2, it follows that A is additive. Putting

m = 0 and letting n → ∞ in (3.8), we get (3.2).

Now, let A′ : X → Y be another additive mapping satisfying (3.2).

Then we have

‖A(x) − A′(x)‖ =
1

2n
‖A(2nx) − A′(2nx)‖

≤
1

2n
(‖A(2nx) − f(2nx)‖ + ‖A′(2nx) − f(2nx)‖)(3.9)

≤
4

2n c
δ +

2

2 − 2p
2(p−1)nh(x)
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for all x ∈ X and all positive integers n. The right-hand side of (3.9)

tends to zero as n → ∞. So we can conclude that A(x) = A′(x) for

all x ∈ X. This proves the uniqueness of A.

(II) The case p > 1. Replacing x by x
2

in (3.5), we have

(3.10) ‖f(x) − 2f(
x

2
)‖ ≤

1

2p
h(x)

for all x ∈ X. Using (3.10), we have

‖2nf(
x

2n
) − 2n+1f(

x

2(n+1)
)‖ ≤

1

2p
2(1−p)nh(x)

for all x ∈ X and all positive integers n.

The rest of the proof is similar to the corresponding part of the

case 0 < p < 1. �

Theorem 5. Assume that δ ≥ 0, p ∈ (0,∞) \ {2} and δ = 0

when p > 2. Let an even mapping f : X → Y satisfy (3.1) for

all x, y, z ∈ X and f(0) = 0. Then there exists a unique quadratic

mapping Q : X → Y such that

(3.11) ‖f(x) − Q(x)‖ ≤
1

c
δ +

1

|4 − 2p|
h(x)

for all x ∈ X, where h(x) = 1
2
H(||x||, ||x||, 0) + 1

4
H(||2x||, 0, 0).

Proof. Putting y = x and z = 0 in (3.1), we have

(3.12) ‖af(
2x

b
) − cf(x)‖ ≤

1

2
(δ + H(||x||, ||x||, 0))

for all x ∈ X. Putting y = z = 0 in (3.1) and then replacing x by 2x,

we have

(3.13) ‖af(
2x

b
) −

c

4
f(2x)‖ ≤

1

4
(δ + H(||2x||, 0, 0))
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for all x ∈ X. By (3.12) and (3.13), we have

(3.14) ‖f(2x) − 4f(x)‖ ≤
3

c
δ + h(x)

for all x ∈ X, where h(x) = 2
c
H(||x||, ||x||, 0) + 1

c
H(||2x||, 0, 0)

We divide the remaining proof by two cases.

(I) The case 0 < p < 2. By (3.14), we have

(3.15) ‖f(x) −
f(2x)

4
‖ ≤

3

4 c
δ +

1

4
h(x)

for all x ∈ X. Using (3.15), we have

‖
f(2nx)

4n
−

f(2n+1x)

4n+1
‖ =

1

4n
‖f(2nx) −

f(2 · 2nx)

4
‖

≤
3

4 c

1

4n
δ +

1

4
2(p−2)nh(x)(3.16)

for all x ∈ X and all positive integers n. By (3.16), we have

(3.17) ‖
f(2mx)

4m
−

f(2nx)

4n
‖ ≤

n−1
∑

k=m

3

4 c

1

4k
δ +

n−1
∑

k=m

1

4
2(p−2)kh(x)

for all x ∈ X and all nonnegative integers m and n with m < n. This

shows that the sequence { f(2nx)
4n

} is a Cauchy sequence for all x ∈ X.

Since Y is complete, the sequence { f(2nx)
4n

} converges for all x ∈ X.

So we can define a mapping Q : X → Y by

Q(x) := lim
n→∞

f(2nx)

4n

for all x ∈ X. We have Q(0) = 0, Q(−x) = Q(x) and

‖DQ(x, y, z)‖ = lim
n→∞

1

4n
‖Df(2nx, 2ny, 2nz)‖

≤ lim
n→∞

(
1

4n
δ + 2(p−2)nH(||x||, ||y||, ||z||)) = 0
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for all x, y, z ∈ X. By Lemma 1, it follows that Q is quadratic.

Putting m = 0 and letting n → ∞ in (3.17), we get (3.11). The proof

of the uniqueness of Q is similar to the proof of Theorem 4.

(II) The case p > 2. Replacing x by x
2 in (3.14), we have

(3.18) ‖f(x) − 4f(
x

2
)‖ ≤

1

2p
h(x)

for all x ∈ X. Using (3.18), we have

‖4nf(
x

2n
) − 4n+1f(

x

2(n+1)
)‖ ≤

1

2p
2(2−p)nh(x)

for all x ∈ X.

The rest of the proof is similar to the corresponding part of the

case p < 2. �

Theorem 6. Let δ ≥ 0 and p ∈ (0,∞)\{1, 2}. Assume that δ = 0

if p > 1 and ‖(4a − 3c)f(0)‖ = 0 if p > 2. If a mapping f : X → Y

satisfy (3.1) for all x, y, z ∈ X, then there exist a unique quadratic

mapping Q : X → Y and a unique additive mapping A : X → Y such

that

‖f(x) − f(0) − Q(x) − A(x)‖ ≤
3

c
δ + ‖(

4a

c
− 3)f(0)‖

+
1

|4 − 2p|
h1(x) +

1

|2 − 2p|
h2(x),(3.19)

‖
f(x) + f(−x)

2
− f(0) −Q(x)‖ ≤

1

c
δ + ‖(

4a

c
− 3)f(0)‖

+
1

|4 − 2p|
h1(x),(3.20)

‖
f(x) − f(−x)

2
− A(x)‖ ≤

2

c
δ +

1

|2 − 2p|
h2(x)

(3.21)

for all x ∈ X, where h1(x) = 1
2H(||x||, ||x||, 0) + 1

4H(||2x||, 0, 0) and

h2(x) = 1
4(H(||x||, ||x||, 0) + H(||2x||, 0, 0)).
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Proof. Let q1(x) := 1
2 (f(x) + f(−x)) for all x ∈ X. Then q1(0) =

f(0), q1(−x) = q1(x) and

‖Dq1(x, y, z)‖ ≤ δ + H(||x||, ||y||, ||z||)

for all x, y, z ∈ X.

Let q(x) := q1(x) − q1(0) for all x ∈ X. Then q(0) = 0, q(−x) =

q(x) and

‖Dq(x, y, z)‖ = ‖Dq1(x, y, z) − (4a − 3c)q1(0)‖

≤ ‖Dq1(x, y, z)‖ + ‖(4a − 3c)q1(0)‖

≤ δ + ‖(4a − 3c)f(0)‖ + H(||x||, ||y||, ||z||)

for all x, y, z ∈ X. By Theorem 5, there exists a unique quadratic

mapping Q : X → Y satisfying (3.20).

Let g(x) := 1
2 (f(x) − f(−x)) for all x ∈ X. Then g(−x) = −g(x)

and

‖Dg(x, y, z)‖ ≤ δ + H(||x||, ||y||, ||z||)

for all x, y, z ∈ X. By Theorem 4, there exists a unique additive

mapping A : X → Y satisfying (3.21). Clearly, we have (3.19) for all

x ∈ X. �

Define a function H : R+ × R+ × R+ → R+ by H(a, b, c) = (ap +

bp + cp)θ where θ ≥ 0 and p ∈ (0,∞). Then H is homogeneous of

degree p. So we have the following corollary.

Corollary 7. Let δ ≥ 0 and p ∈ (0,∞) \ {1, 2}. Assume that

δ = 0 if p > 1 and ‖(4a − 3c)f(0)‖ = 0 if p > 2. If a mapping

f : X → Y satisfy

‖Df(x, y, z)‖ ≤ δ + θ(||x||p + ||y||p + ||z||p)
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for all x, y, z ∈ X, then there exist a unique quadratic mapping Q :

X → Y and a unique additive mapping A : X → Y such that

‖f(x) − f(0) − Q(x) −A(x)‖ ≤
3

c
δ + ‖(

4a

c
− 3)f(0)‖

+ (
4 + 2p

4|4 − 2p|
+

2 + 2p

4|2 − 2p|
)θ||x||p,

‖
f(x) + f(−x)

2
− f(0) −Q(x)‖ ≤

1

c
δ + ‖(

4a

c
− 3)f(0)‖ +

4 + 2p

4|4 − 2p|
θ||x||p,

‖
f(x) − f(−x)

2
−A(x)‖ ≤

2

c
δ +

2 + 2p

4|2 − 2p|
θ||x||p

for all x ∈ X.
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