HYERS-ULAM-RASSIAS STABILITY OF A FUNCTIONAL EQUATION IN THREE VARIABLES

Sang Han Lee* and Chun-Gil Park**

Abstract. In this paper, we solve the following functional equation

$$
\begin{aligned}
& a f\left(\frac{x+y+z}{b}\right)+a f\left(\frac{x-y+z}{b}\right)+a f\left(\frac{x+y-z}{b}\right) \\
& \quad+a f\left(\frac{-x+y+z}{b}\right)=c f(x)+c f(y)+c f(z),
\end{aligned}
$$

and prove the Hyers-Ulam-Rassias stability of the functional equation as given above.

1. Introduction

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Hyers [4] showed that if $\epsilon>0$ and $f: X \rightarrow Y$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in X$, then there exists a unique additive mapping $T: X \rightarrow$ Y such that

$$
\|f(x)-T(x)\| \leq \epsilon
$$

for all $x \in X$.

[^0]Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$. Th.M. Rassias [6] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. Găvruta [3] generalized the Rassias' result.
A square norm on an inner product space satisfies the important parallelogram equality $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$. The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic function. A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [7] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In [2], Czerwik proved the Hyers-Ulam-Rassias stability of the quadratic functional equation.

In [5], the authors solved the quadratic type functional equation

$$
\begin{aligned}
a^{2} f\left(\frac{x+y+z}{a}\right) & +a^{2} f\left(\frac{x-y+z}{a}\right)+a^{2} f\left(\frac{x+y-z}{a}\right) \\
& +a^{2} f\left(\frac{-x+y+z}{a}\right)=4 f(x)+4 f(y)+4 f(z)
\end{aligned}
$$

and proved the generalized Hyers-Ulam-Rassias stability of the quadratic type functional equation.

Throughout this paper, assume that a, b, c are positive real numbers, and that X and Y are real vector spaces.

In this paper, we solve the following functional equation

$$
\begin{align*}
a f\left(\frac{x+y+z}{b}\right) & +a f\left(\frac{x-y+z}{b}\right)+a f\left(\frac{x+y-z}{b}\right) \\
& +a f\left(\frac{-x+y+z}{b}\right)=c f(x)+c f(y)+c f(z) \tag{1.i}
\end{align*}
$$

for all $x, y, z \in X$, and prove the generalized Hyers-Ulam-Rassias stability of the functional equation as given above.

2. Solutions of a functional equation in three variables

Lemma 1. If an even mapping $f: X \rightarrow Y$ satisfies (1.i) for all $x, y, z \in X$ and $f(0)=0$, then f is quadratic.

Proof. Note that $f(-x)=f(x)$ for all $x \in X$ since f is an even mapping. Putting $y=z=0$ in (1.i), we have

$$
\begin{equation*}
4 a f\left(\frac{x}{b}\right)=c f(x) \tag{2.1}
\end{equation*}
$$

for all $x \in X$. Using (2.1) and (1.i), we get

$$
f(x+y+z)+f(x-y+z)+f(x+y-z)+f(-x+y+z)
$$

$$
\begin{equation*}
=4 f(x)+4 f(y)+4 f(z) \tag{2.2}
\end{equation*}
$$

for all $x, y, z \in X$. Putting $z=0$ in (2.2), we deduce $f(x+y)+f(x-$ $y)=2 f(x)+2 f(y)$ for all $x, y \in X$. So f is quadratic.

Lemma 2. If an odd mapping $f: X \rightarrow Y$ satisfies (1.i) for all $x, y, z \in X$, then f is additive.

Proof. Note that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in X$ since f is an odd mapping. Putting $y=z=0$ in (1.i), we have

$$
\begin{equation*}
2 a f\left(\frac{x}{b}\right)=c f(x) \tag{2.3}
\end{equation*}
$$

for all $x \in X$. Using (2.3) and (1.i), we get

$$
\begin{aligned}
f(x+y+z)+f(x-y+z) & +f(x+y-z)+f(-x+y+z) \\
& =2 f(x)+2 f(y)+2 f(z)
\end{aligned}
$$

for all $x, y, z \in X$. Putting $z=0$ in (2.4), we deduce $f(x+y)=$ $f(x)+f(y)$ for all $x, y \in X$. So f is additive.

Theorem 3. If a mapping $f: X \rightarrow Y$ satisfies (1.i) for all $x, y, z \in$ X and $f(0)=0$, then there exist an additive mapping $A: X \rightarrow Y$ and a quadratic mapping $Q: X \rightarrow Y$ such that

$$
f(x)=Q(x)+A(x)
$$

for all $x \in X$.
Proof. Let $A(x):=\frac{f(x)-f(-x)}{2}$ for all $x \in X$. Then $A(-x)=$ $-A(x)$ and A satisfies (1.i) for all $x, y, z \in X$. By Lemma 2, A is additive.

Let $Q(x):=\frac{f(x)+f(-x)}{2}$ for all $x \in X$. Then $Q(0)=0, Q(-x)=$ $Q(x)$ and Q satisfies (1.i) for all $x, y, z \in X$. By Lemma $1, Q$ is quadratic. Clearly, we have $f(x)=Q(x)+A(x)$ for all $x \in X$.

3. Stability of a functional equation in three variables

Let \mathbb{R}_{+}denote the set of nonnegative real numbers. Recall that a function $H: \mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is homogeneous of degree $p>0$ if it satisfies $H(t u, t v, t w)=t^{p} H(u, v, w)$ for all nonnegative real numbers t, u, v, w.

Throughout this section, assume that X and Y are a real normed vector space with norm $\|\cdot\|$ and a real Banach space with norm $\|\cdot\|$, respectively, and that H is homogeneous of degree p. Given a mapping $f: X \rightarrow Y$, we set

$$
\begin{aligned}
D f(x, y, z):= & a f\left(\frac{x+y+z}{b}\right)+a f\left(\frac{x-y+z}{b}\right)+a f\left(\frac{x+y-z}{b}\right) \\
& +a f\left(\frac{-x+y+z}{b}\right)-c f(x)-c f(y)-c f(z)
\end{aligned}
$$

for all $x, y, z \in X$.
Theorem 4. Assume that $\delta \geq 0, p \in(0, \infty) \backslash\{1\}$ and $\delta=0$ when $p>1$. Let an odd mapping $f: X \rightarrow Y$ satisfy

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \delta+H(\|x\|,\|y\|,\|z\|) \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-A(x)\| \leq \frac{2}{c} \delta+\frac{1}{\left|2-2^{p}\right|} h(x) \tag{3.2}
\end{equation*}
$$

for all $x \in X$, where $h(x)=\frac{1}{4}(H(\|x\|,\|x\|, 0)+H(\|2 x\|, 0,0))$.
Proof. Note that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in X$ since f is an odd mapping. Putting $y=z=0$ in (3.1) and then replacing x by $2 x$, we have

$$
\begin{equation*}
\left\|a f\left(\frac{2 x}{b}\right)-\frac{c}{2} f(2 x)\right\| \leq \frac{1}{2}(\delta+H(\|2 x\|, 0,0)) \tag{3.3}
\end{equation*}
$$

for all $x \in X$. Putting $y=x$ and $z=0$ in (3.1), we have

$$
\begin{equation*}
\left\|a f\left(\frac{2 x}{b}\right)-c f(x)\right\| \leq \frac{1}{2}(\delta+H(\|x\|,\|x\|, 0)) \tag{3.4}
\end{equation*}
$$

for all $x \in X$. By (3.3) and (3.4), we have

$$
\begin{equation*}
\|f(2 x)-2 f(x)\| \leq \frac{2}{c} \delta+h(x) \tag{3.5}
\end{equation*}
$$

for all $x \in X$, where $h(x)=\frac{1}{c}(H(\|x\|,\|x\|, 0)+H(\|2 x\|, 0,0))$.
We divide the remaining proof by two cases.
(I) The case $0<p<1$. By (3.5), we have

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{2}\right\| \leq \frac{1}{c} \delta+\frac{1}{2} h(x) \tag{3.6}
\end{equation*}
$$

for all $x \in X$. Using (3.6), we have

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n+1} x\right)}{2^{n+1}}\right\| & =\frac{1}{2^{n}}\left\|f\left(2^{n} x\right)-\frac{f\left(2 \cdot 2^{n} x\right)}{2}\right\| \\
& \leq \frac{1}{2^{n} c} \delta+\frac{1}{2} 2^{(p-1) n} h(x) \tag{3.7}
\end{align*}
$$

for all $x \in X$ and all positive integers n. By (3.7), we have

$$
\begin{equation*}
\left\|\frac{f\left(2^{m} x\right)}{2^{m}}-\frac{f\left(2^{n} x\right)}{2^{n}}\right\| \leq \sum_{k=m}^{n-1} \frac{1}{2^{k} c} \delta+\sum_{k=m}^{n-1} \frac{1}{2} 2^{(p-1) k} h(x) \tag{3.8}
\end{equation*}
$$

for all $x \in X$ and all positive integers m and n with $m<n$. This shows that the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ converges for all $x \in X$. So we can define a mapping $A: X \rightarrow Y$ by

$$
A(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

for all $x \in X$. Since $f(-x)=-f(x)$ for all $x \in X$, we have $A(-x)=$ $-A(x)$ for all $x \in X$. Also, we get

$$
\begin{aligned}
\|D A(x, y, z)\| & =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \delta+2^{(p-1) n} H(\|x\|,\|y\|,\|z\|)=0
\end{aligned}
$$

for all $x, y, z \in X$. By Lemma 2, it follows that A is additive. Putting $m=0$ and letting $n \rightarrow \infty$ in (3.8), we get (3.2).

Now, let $A^{\prime}: X \rightarrow Y$ be another additive mapping satisfying (3.2). Then we have

$$
\begin{aligned}
\left\|A(x)-A^{\prime}(x)\right\| & =\frac{1}{2^{n}}\left\|A\left(2^{n} x\right)-A^{\prime}\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{2^{n}}\left(\left\|A\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|A^{\prime}\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|\right) \\
& \leq \frac{4}{2^{n} c} \delta+\frac{2}{2-2^{p}} 2^{(p-1) n} h(x)
\end{aligned}
$$

for all $x \in X$ and all positive integers n. The right-hand side of (3.9) tends to zero as $n \rightarrow \infty$. So we can conclude that $A(x)=A^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of A.
(II) The case $p>1$. Replacing x by $\frac{x}{2}$ in (3.5), we have

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{1}{2^{p}} h(x) \tag{3.10}
\end{equation*}
$$

for all $x \in X$. Using (3.10), we have

$$
\left\|2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n+1} f\left(\frac{x}{2^{(n+1)}}\right)\right\| \leq \frac{1}{2^{p}} 2^{(1-p) n} h(x)
$$

for all $x \in X$ and all positive integers n.
The rest of the proof is similar to the corresponding part of the case $0<p<1$.

Theorem 5. Assume that $\delta \geq 0, p \in(0, \infty) \backslash\{2\}$ and $\delta=0$ when $p>2$. Let an even mapping $f: X \rightarrow Y$ satisfy (3.1) for all $x, y, z \in X$ and $f(0)=0$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{c} \delta+\frac{1}{\left|4-2^{p}\right|} h(x) \tag{3.11}
\end{equation*}
$$

for all $x \in X$, where $h(x)=\frac{1}{2} H(\|x\|,\|x\|, 0)+\frac{1}{4} H(\|2 x\|, 0,0)$.
Proof. Putting $y=x$ and $z=0$ in (3.1), we have

$$
\begin{equation*}
\left\|a f\left(\frac{2 x}{b}\right)-c f(x)\right\| \leq \frac{1}{2}(\delta+H(\|x\|,\|x\|, 0)) \tag{3.12}
\end{equation*}
$$

for all $x \in X$. Putting $y=z=0$ in (3.1) and then replacing x by $2 x$, we have

$$
\begin{equation*}
\left\|a f\left(\frac{2 x}{b}\right)-\frac{c}{4} f(2 x)\right\| \leq \frac{1}{4}(\delta+H(\|2 x\|, 0,0)) \tag{3.13}
\end{equation*}
$$

for all $x \in X$. By (3.12) and (3.13), we have

$$
\begin{equation*}
\|f(2 x)-4 f(x)\| \leq \frac{3}{c} \delta+h(x) \tag{3.14}
\end{equation*}
$$

for all $x \in X$, where $h(x)=\frac{2}{c} H(\|x\|,\|x\|, 0)+\frac{1}{c} H(\|2 x\|, 0,0)$
We divide the remaining proof by two cases.
(I) The case $0<p<2$. By (3.14), we have

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{4}\right\| \leq \frac{3}{4 c} \delta+\frac{1}{4} h(x) \tag{3.15}
\end{equation*}
$$

for all $x \in X$. Using (3.15), we have

$$
\begin{align*}
\left\|\frac{f\left(2^{n} x\right)}{4^{n}}-\frac{f\left(2^{n+1} x\right)}{4^{n+1}}\right\| & =\frac{1}{4^{n}}\left\|f\left(2^{n} x\right)-\frac{f\left(2 \cdot 2^{n} x\right)}{4}\right\| \\
& \leq \frac{3}{4 c} \frac{1}{4^{n}} \delta+\frac{1}{4} 2^{(p-2) n} h(x) \tag{3.16}
\end{align*}
$$

for all $x \in X$ and all positive integers n. By (3.16), we have

$$
\begin{equation*}
\left\|\frac{f\left(2^{m} x\right)}{4^{m}}-\frac{f\left(2^{n} x\right)}{4^{n}}\right\| \leq \sum_{k=m}^{n-1} \frac{3}{4 c} \frac{1}{4^{k}} \delta+\sum_{k=m}^{n-1} \frac{1}{4} 2^{(p-2) k} h(x) \tag{3.17}
\end{equation*}
$$

for all $x \in X$ and all nonnegative integers m and n with $m<n$. This shows that the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ converges for all $x \in X$. So we can define a mapping $Q: X \rightarrow Y$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}
$$

for all $x \in X$. We have $Q(0)=0, Q(-x)=Q(x)$ and

$$
\begin{aligned}
\|D Q(x, y, z)\| & =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|D f\left(2^{n} x, 2^{n} y, 2^{n} z\right)\right\| \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{1}{4^{n}} \delta+2^{(p-2) n} H(\|x\|,\|y\|,\|z\|)\right)=0
\end{aligned}
$$

for all $x, y, z \in X$. By Lemma 1, it follows that Q is quadratic. Putting $m=0$ and letting $n \rightarrow \infty$ in (3.17), we get (3.11). The proof of the uniqueness of Q is similar to the proof of Theorem 4.
(II) The case $p>2$. Replacing x by $\frac{x}{2}$ in (3.14), we have

$$
\begin{equation*}
\left\|f(x)-4 f\left(\frac{x}{2}\right)\right\| \leq \frac{1}{2^{p}} h(x) \tag{3.18}
\end{equation*}
$$

for all $x \in X$. Using (3.18), we have

$$
\left\|4^{n} f\left(\frac{x}{2^{n}}\right)-4^{n+1} f\left(\frac{x}{2^{(n+1)}}\right)\right\| \leq \frac{1}{2^{p}} 2^{(2-p) n} h(x)
$$

for all $x \in X$.
The rest of the proof is similar to the corresponding part of the case $p<2$.

Theorem 6. Let $\delta \geq 0$ and $p \in(0, \infty) \backslash\{1,2\}$. Assume that $\delta=0$ if $p>1$ and $\|(4 a-3 c) f(0)\|=0$ if $p>2$. If a mapping $f: X \rightarrow Y$ satisfy (3.1) for all $x, y, z \in X$, then there exist a unique quadratic mapping $Q: X \rightarrow Y$ and a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(x)-f(0)-Q(x)-A(x)\| \leq \frac{3}{c} \delta+\left\|\left(\frac{4 a}{c}-3\right) f(0)\right\|
$$

$$
\begin{equation*}
+\frac{1}{\left|4-2^{p}\right|} h_{1}(x)+\frac{1}{\left|2-2^{p}\right|} h_{2}(x) \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\frac{f(x)+f(-x)}{2}-f(0)-Q(x)\right\| \leq \frac{1}{c} \delta+\left\|\left(\frac{4 a}{c}-3\right) f(0)\right\| \tag{3.20}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\frac{f(x)-f(-x)}{2}-A(x)\right\| \leq \frac{2}{c} \delta+\frac{1}{\left|2-2^{p}\right|} h_{2}(x) \tag{3.21}
\end{equation*}
$$

for all $x \in X$, where $h_{1}(x)=\frac{1}{2} H(\|x\|,\|x\|, 0)+\frac{1}{4} H(\|2 x\|, 0,0)$ and $h_{2}(x)=\frac{1}{4}(H(\|x\|,\|x\|, 0)+H(\|2 x\|, 0,0))$.

Proof. Let $q_{1}(x):=\frac{1}{2}(f(x)+f(-x))$ for all $x \in X$. Then $q_{1}(0)=$ $f(0), q_{1}(-x)=q_{1}(x)$ and

$$
\left\|D q_{1}(x, y, z)\right\| \leq \delta+H(\|x\|,\|y\|,\|z\|)
$$

for all $x, y, z \in X$.
Let $q(x):=q_{1}(x)-q_{1}(0)$ for all $x \in X$. Then $q(0)=0, q(-x)=$ $q(x)$ and

$$
\begin{aligned}
\|D q(x, y, z)\| & =\left\|D q_{1}(x, y, z)-(4 a-3 c) q_{1}(0)\right\| \\
& \leq\left\|D q_{1}(x, y, z)\right\|+\left\|(4 a-3 c) q_{1}(0)\right\| \\
& \leq \delta+\|(4 a-3 c) f(0)\|+H(\|x\|,\|y\|,\|z\|)
\end{aligned}
$$

for all $x, y, z \in X$. By Theorem 5 , there exists a unique quadratic mapping $Q: X \rightarrow Y$ satisfying (3.20).

Let $g(x):=\frac{1}{2}(f(x)-f(-x))$ for all $x \in X$. Then $g(-x)=-g(x)$ and

$$
\|D g(x, y, z)\| \leq \delta+H(\|x\|,\|y\|,\|z\|)
$$

for all $x, y, z \in X$. By Theorem 4, there exists a unique additive mapping $A: X \rightarrow Y$ satisfying (3.21). Clearly, we have (3.19) for all $x \in X$.

Define a function $H: \mathbb{R}_{+} \times \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$by $H(a, b, c)=\left(a^{p}+\right.$ $\left.b^{p}+c^{p}\right) \theta$ where $\theta \geq 0$ and $p \in(0, \infty)$. Then H is homogeneous of degree p. So we have the following corollary.

Corollary 7. Let $\delta \geq 0$ and $p \in(0, \infty) \backslash\{1,2\}$. Assume that $\delta=0$ if $p>1$ and $\|(4 a-3 c) f(0)\|=0$ if $p>2$. If a mapping $f: X \rightarrow Y$ satisfy

$$
\|D f(x, y, z)\| \leq \delta+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $x, y, z \in X$, then there exist a unique quadratic mapping Q :
$X \rightarrow Y$ and a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{aligned}
\|f(x)-f(0)-Q(x)-A(x)\| & \leq \frac{3}{c} \delta+\left\|\left(\frac{4 a}{c}-3\right) f(0)\right\| \\
& +\left(\frac{4+2^{p}}{4\left|4-2^{p}\right|}+\frac{2+2^{p}}{4\left|2-2^{p}\right|}\right) \theta\|x\|^{p}, \\
\left\|\frac{f(x)+f(-x)}{2}-f(0)-Q(x)\right\| & \leq \frac{1}{c} \delta+\left\|\left(\frac{4 a}{c}-3\right) f(0)\right\|+\frac{4+2^{p}}{4\left|4-2^{p}\right|} \theta\|x\|^{p}, \\
\left\|\frac{f(x)-f(-x)}{2}-A(x)\right\| & \leq \frac{2}{c} \delta+\frac{2+2^{p}}{4\left|2-2^{p}\right|} \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.

References

1. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
2. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
3. P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
4. D.H. Hyers, On the stability of the linear functional equation, Pro. Nat'l. Acad. Sci. U.S.A. 27 (1941), 222-224.
5. S. Lee and K. Jun, Hyers-Ulam-Rassias stability of a quadratic type functional equation, Bull. Korean Math. Soc. 40 (2003), 183-193.
6. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
7. F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
```
*
```

Department of Cultural Studies
Chungbuk Provincial University of Science \& Technology
Okcheon 373-807, Korea
E-mail: shlee@ctech.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail: cgpark@math.cnu.ac.kr

[^0]: **The second author was supported by Korea Research Foundation Grant KRF-2002-041-C00014.

 Received by the editors on September 15, 2003.
 2000 Mathematics Subject Classifications: Primary 39B72.
 Key words and phrases: functional equation in three variables, stability.

