JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 16, No.2, December 2003

ON A SELF-SIMILAR MEASURE ON A SELF-SIMILAR CANTOR SET

In-Soo Baek*

ABSTRACT. We compare a self-similar measure on a self-similar Cantor set with a quasi-self-similar measure on a deranged Cantor set. Further we study some properties of a self-similar measure on a selfsimilar Cantor set.

1. Introduction

Recently the multifractal spectrum by a self-similar measure of a self-similar Cantor set was studied([11, 13]) for the investigation of its geometrical properties. We([2, 5]) studied a deranged Cantor set which is the most generalized Cantor set which has a local structure of a perturbed Cantor set([1, 3, 4, 5, 6]), which is also a generalized form of self-similar Cantor set. In this paper, we compare the self-similar measure with a quasi-self-similar measure which also gives a spectrum of a deranged Cantor set([7, 10]). Recently we found the relation between a subset composing a spectrum by a self-similar measure of a self-similar Cantor set and a distribution set of the self-similar Cantor set([8, 9]). On the basis of the relation, we introduce an easy closed form of computing dimensions of a subset of the same local dimension of a self-similar measure on a self-similar Cantor set and give an example. Further we discuss some properties of the function of local dimension of self-similar measure at a point in a self-similar Cantor set, which plays an important role in the transformed dimension theory ([7, 10]).

Received by the editors on August 04, 2003.

²⁰⁰⁰ Mathematics Subject Classifications : Primary 28A78.

Key words and phrases: Hausdorff dimension, packing dimension, Cantor set, self-similar measure.

2. Preliminaries

We recall the definition of a deranged Cantor $\operatorname{set}([2])$. Let $X_{\phi} = [0, 1]$. We obtain the left subinterval $X_{i,1}$ and the right subinterval $X_{i,2}$ of X_i by deleting a middle open subinterval of X_i inductively for each $i \in \{1, 2\}^n$, where $n = 0, 1, 2, \ldots$. Let $E_n = \bigcup_{i \in \{1, 2\}^n} X_i$. Then E_n is a decreasing sequence of closed sets. For each n, we set $|X_{i,1}|/|X_i| = c_{i,1}$ and $|X_{i,2}|/|X_i| = c_{i,2}$ for all $i \in \{1, 2\}^n$, where $n = 0, 1, 2, \cdots$ where |X| denotes the length of X. We assume that the contraction ratios c_i and gap ratios $1 - (c_{i,1} + c_{i,2})$ are uniformly bounded away from 0. We call $F = \bigcap_{n=0}^{\infty} E_n$ a deranged Cantor $\operatorname{set}([2])$. We note that a deranged Cantor set satisfying $c_{i,1} = a_{n+1}$ and $c_{i,2} = b_{n+1}$ for all $i \in \{1, 2\}^n$, for each $n = 0, 1, 2, \cdots$ is called a perturbed Cantor $\operatorname{set}([1])$. Further a perturbed Cantor set with $a_{n+1} = a$ and $b_{n+1} = b$ for all $n = 0, 1, 2, \cdots$ is called a self-similar Cantor $\operatorname{set}([11])$.

For $i \in \{1,2\}^n$, X_i denotes a fundamental interval of the *n*-stage of construction of a deranged Cantor set. Let \mathbb{R} be the set of all real numbers and \mathbb{N} be the set of all natural numbers. For $y \in \mathbb{R}$, we([2]) define a quasi-self-similar measure μ_y on a deranged Cantor set F to be a Borel probability measure induced by

$$\mu_y(X_{\mathfrak{i}}) = p_{i_1} p_{i_1, i_2} \cdots p_{i_1, i_2, \cdots, i_n}$$

where

$$p_{i_1,\cdots,i_k} = \frac{c_{i_1,\cdots,i_{k-1},i_k}^y}{c_{i_1,\cdots,i_{k-1},1}^y + c_{i_1,\cdots,i_{k-1},2}^y}$$

for each $1 \leq k \leq n$ and $i = i_1, \dots, i_n$. Then clearly we see that $p_{i_1,\dots,i_{k-1},2} = 1 - p_{i_1,\dots,i_{k-1},1}$.

REMARK 2.1. In a perturbed Cantor set F, for $y \in \mathbb{R}$ we find $p_{i_1,\dots,i_{k-1},1} = p_k = \frac{a_k^y}{a_k^y + b_k^y}$ for each $k \in \mathbb{N}$. Further the quasi-self-similar measure μ_y on F is a Borel probability measure induced by

 $\mathbf{2}$

$$\mu_y(X_i) = r_{i_1}^{(1)} r_{i_2}^{(2)} \cdots r_{i_n}^{(n)} \quad \text{where} \quad r_{i_k}^{(k)} = \begin{cases} p_k & \text{for } i_k = 1\\ 1 - p_k & \text{for } i_k = 2 \end{cases},$$

 $\mathbf{i} = i_1, \cdots, i_k, \cdots, i_n$ and $1 \le k \le n$. We note that μ_y is just a self-similar measure if F is a self-similar Cantor set. We write μ_y as γ_p where $p = \frac{a^y}{a^y + b^y}$.

For $x \in F$, we write $X_n(x)$ for the *n*-th level set $X_{i_1\cdots i_n}$ that contains x. We also note that if $x \in F$, then there is $\sigma \in \{1,2\}^N$ such that $\bigcap_{n=0}^{\infty} X_{\sigma|n} = \{x\}$ (Here $\sigma|n = i_1, i_2, \cdots, i_n$ where $\sigma = i_1, i_2, \cdots, i_n, i_{n+1}, \cdots$). Hereafter, we use $\sigma \in \{1,2\}^N$ and $x \in F$ as the same identity freely.

In a self-similar Cantor set F, we can consider a generalized expansion of x from σ , that is if $\sigma = i_1, i_2, \dots, i_k, i_{k+1}, \dots$ then the expansion of x is $0.j_1, j_2, \dots, j_k, j_{k+1}, \dots$ where $j_k = 0$ if $i_k = 1$ and $j_k = 2$ if $i_k = 2$. We denote $n_0(x|k)$ the number of times the digit 0 occurs in the first kplaces of the generalized expansion of x([12]).

For $r \in [0, 1]$, we define lower(upper) distribution set $\underline{F}(r)(\overline{F}(r))$ containing the digit 0 in proportion r by

$$\underline{F}(r) = \{x \in F : \liminf_{k \to \infty} \frac{n_0(x|k)}{k} = r\},\$$
$$\overline{F}(r) = \{x \in F : \limsup_{k \to \infty} \frac{n_0(x|k)}{k} = r\}.$$

We write $\underline{F}(r) \cap \overline{F}(r)$ as F(r).

The lower and upper local dimension of a finite measure μ at $x \in \mathbb{R}$ are defined([11]) by

$$\underline{\dim}_{loc}\mu(x) = \liminf_{r \to 0} \frac{\log \mu(B(x, r))}{\log r}$$

$$\overline{\dim}_{loc}\mu(x) = \limsup_{r \to 0} \frac{\log \mu(B(x, r))}{\log r}$$

where B(x, r) is the closed ball with center $x \in \mathbb{R}$ and radius r > 0.

If $\underline{\dim}_{loc}\mu(x) = \overline{\dim}_{loc}\mu(x)$, we call it the local dimension of μ at x and write it as $\dim_{loc}\mu(x)$. These local dimensions express the power law behaviour of $\mu(B(x,r))$ for some r > 0.

For $\alpha \geq 0$ define

$$E_{\alpha}^{y} = \{x \in \mathbb{R} | \dim_{loc} \mu_{y}(x) = \alpha\}$$
$$= \{x \in \mathbb{R} | \lim_{r \to 0} \frac{\log \mu_{y}(B(x, r))}{\log r} = \alpha\}$$

Also we write $\underline{E}_{\alpha}^{y}$ ($\overline{E}_{\alpha}^{y}$) for the set of points at which the lower(upper) local dimension of μ_{y} on F is exactly α , so that

$$\underline{E}_{\alpha}^{y} = \{x : \liminf_{r \to 0} \frac{\log \mu_{y}(B(x, r))}{\log r} = \alpha\},\$$
$$\overline{E}_{\alpha}^{y} = \{x : \limsup_{r \to 0} \frac{\log \mu_{y}(B(x, r))}{\log r} = \alpha\}.$$

From now on, $\dim(E)$ denotes the Hausdorff dimension of $E \in \mathbb{R}$ and $\operatorname{Dim}(E)$ denotes the packing dimension of E. In this paper, we assume that $0 \log 0 = 0$ for convenience.

3. Main results

Consider a self-similar Cantor set F with two contraction ratios aand b. Let $y \in \mathbb{R}$ and consider $p^q a^{\beta^y(q)} + (1-p)^q b^{\beta^y(q)} = 1$ and $p = \frac{a^y}{a^y + b^y}$. For $\alpha \ge 0$, the Legendre transform $f^y(\alpha)$ of beta function β^y is defined by

$$f^{y}(\alpha) = \inf_{-\infty < q < \infty} \{\beta^{y}(q) + \alpha q\}.$$

It will be helpful for us to study the relation between the set $X_n(x)$ and the closed ball B(x,r), that is, $|X_n(x)|$ is comparable with r.

LEMMA 3.1. Given a Borel probability measure μ on a deranged Cantor set F, for all $x \in F$,

$$\liminf_{r \to 0} \frac{\log \mu(B(x,r))}{\log r} = \liminf_{n \to \infty} \frac{\log \mu(X_n(x))}{\log |X_n(x)|}$$

and

$$\limsup_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} = \limsup_{n \to \infty} \frac{\log \mu(X_n(x))}{\log |X_n(x)|}.$$

Proof. It is obvious from the fact that the contraction ratios are uniformly bounded away from 0. \Box

THEOREM 3.2. Let $y \in \mathbb{R}$ and $p = \frac{a^y}{a^y + b^y}$. Consider a self-similar measure $\gamma_p(=\mu_y)$ on a self-similar Cantor set F and let $r \in [0, 1]$ and $g(r, p) = \frac{r \log p + (1-r) \log(1-p)}{r \log a + (1-r) \log b}$. Then $\dim(E^y_{\alpha}) = \dim(E^y_{\alpha}) = g(r, r)$ where $\alpha = g(r, p)$.

Proof. From (11.30) (11.35) and (11.50) in [11], we see that the dimensions of E^y_{α} is $f^y(\alpha) = \alpha q + \beta^y(q)$ where q and $\beta^y(q)$ satisfies the two equations such that $p^q a^{\beta^y(q)} + (1-p)^q b^{\beta^y(q)} = 1$ and

$$\alpha = \frac{p^q a^{\beta^y(q)} \log p + (1-p)^q b^{\beta^y(q)} \log(1-p)}{p^q a^{\beta^y(q)} \log a + (1-p)^q b^{\beta^y(q)} \log b}.$$

Putting $p^q a^{\beta^{y}(q)} = r$ for q and $\beta^{y}(q)$ satisfying the above two equations, we see that r satisfies $\alpha = g(r, p)$. We easily see that $g(r, r) = \alpha q + \beta^{y}(q)$.

REMARK 3.1. From the proof in the above theorem, we get our result that $\dim(E^y_{\alpha}) = \dim(E^y_{\alpha}) = g(r,r)$ where $\alpha = g(r,p)$. However this result was hinted from the relation between a distribution set and a subset E^y_{α} of same local dimension of a self-similar measure([8]).

REMARK 3.2. The calculation from our result in the above theorem that $\dim(E^y_{\alpha}) = \operatorname{Dim}(E^y_{\alpha}) = g(r,r)$ where $\alpha = g(r,p)$ is much easier to compute than that of Olsen([11, 13]). That is, it is so hard to find the values q and $\beta^y(q)$ satisfying the two equations such that $p^q a^{\beta^y(q)} + (1-p)^q b^{\beta^y(q)} = 1$ and

$$\alpha = \frac{p^q a^{\beta^y(q)} \log p + (1-p)^q b^{\beta^y(q)} \log(1-p)}{p^q a^{\beta^y(q)} \log a + (1-p)^q b^{\beta^y(q)} \log b}$$

After finding such two values q and $\beta^y(q)$, we get $\dim(E^y_{\alpha}) = \dim(E^y_{\alpha}) = f^y(\alpha) = \alpha q + \beta^y(q)$.

REMARK 3.3. In the above theorem, when we consider E_{α}^{y} , the range of α is $\left[\frac{\log p}{\log a}, \frac{\log(1-p)}{\log b}\right]$ or $\left[\frac{\log(1-p)}{\log b}, \frac{\log p}{\log a}\right]$ which has non-empty interior if $\frac{\log p}{\log a} \neq \frac{\log(1-p)}{\log b}$.

We give an example to show how much our calculation is easier than that of Olsen.

EXAMPLE 3.1. Consider a self-similar Cantor set with $a = \frac{1}{2}$ and $b = \frac{1}{4}$. Then there is a solution y such that $\frac{1}{2} = \frac{a^y}{a^y+b^y}$. That is $p = \frac{1}{2}$. In fact y = 0. Now we find the dimensions of $E_{\frac{3}{4}}^0$. Our calculation is easy. That is we find r such that $\frac{3}{4} = \frac{r\log\frac{1}{2}+(1-r)\log\frac{1}{2}}{r\log\frac{1}{2}+(1-r)\log\frac{1}{4}} = g(r,\frac{3}{4})$. In fact $r = \frac{2}{3}$. Now we easily find $g(\frac{2}{3},\frac{2}{3}) = \frac{\log 4 - \log 27}{-\log 16}$. So the dimensions of $E_{\frac{3}{4}}^0$ are $\frac{\log 4 - \log 27}{-\log 16}$. That of Olsen is so complicated. Sometimes it is almost impossible to find algebraically the values q and $\beta^y(q)$ satisfying the two equations such that $p^q a^{\beta^y(q)} + (1-p)^q b^{\beta^y(q)} = 1$ and

$$\alpha = \frac{p^q a^{\beta^y(q)} \log p + (1-p)^q b^{\beta^y(q)} \log(1-p)}{p^q a^{\beta^y(q)} \log a + (1-p)^q b^{\beta^y(q)} \log b}$$

In this case we adjusted the numbers to solve it possible even though it is also complicated. We solve $\frac{3}{4} = \frac{\frac{1}{2}q\frac{1}{2}\beta^{y(q)}\log\frac{1}{2} + (1-\frac{1}{2})q\frac{1}{4}\beta^{y(q)}\log(1-\frac{1}{2})}{\frac{1}{2}q\frac{1}{2}\beta^{y(q)}\log\frac{1}{2} + (1-\frac{1}{2})q\frac{1}{4}\beta^{y(q)}\log\frac{1}{4}}$ and

6

find
$$\beta^y(q) = 1$$
. From $\frac{1}{2}q \frac{1}{2}\beta^{y(q)} + (1 - \frac{1}{2})q \frac{1}{4}\beta^{y(q)} = 1$, we see that $q = \frac{\log \frac{4}{3}}{\log \frac{1}{2}}$.
So we have $f^0(\frac{3}{4}) = \frac{3}{4}\frac{\log \frac{4}{3}}{\log \frac{1}{2}} + 1 = \frac{\log 4 - \log 27}{-\log 16}$.

Now we discuss the continuity of the lower(upper) local dimension function $\underline{\dim}_{loc}\mu_y(x)(\overline{\dim}_{loc}\mu_y(x))$ of μ_y at $x \in F$ and $y \in \mathbb{R}$.

THEOREM 3.3. Fix $x \in F$ where F is a self-similar Cantor set. Then $\underline{\dim}_{loc}\mu_y(x)$ is a continuous function for $y \in \mathbb{R}$. Similarly $\overline{\dim}_{loc}\mu_y(x)$ is a continuous function for $y \in \mathbb{R}$.

Proof. Fix $x \in F$. Let $\delta_n(y) = \frac{\sum_{k=1}^n \log(a^y + b^y)}{\log |X_n(x)|}$ for $y \in \mathbb{R}$. We note that $\underline{\dim}_{loc}\mu_y(x) = y - \limsup_{n \to \infty} \delta_n(y)$ from Lemma 3.1. Assume that $B_1 = \min\{a, b\}$ and $B_2 = \max\{a, b\}$. Clearly $0 < B_1 \leq a, b \leq B_2 < 1$ for all $k \in \mathbb{N}$. Consider $h(z) = \frac{a^z + b^z}{a^y + b^y}$ for fixed y. From the mean value theorem we see that h(z) - h(y) = h'(w)(z - y) for some w between z and y. Then

$$\left|\frac{a^{z}+b^{z}}{a^{y}+b^{y}}-1\right| \le \frac{|\log B_{1}|}{B_{1}}|z-y|$$

for all $k \in \mathbb{N}$. Hence

$$|\delta_n(z) - \delta_n(y)| \le \frac{K|z - y|}{|\log B_2|}$$

for all $n \in \mathbb{N}$ where $0 < K < \infty$ which is from B_1 and independent of n. Putting $\frac{K}{|\log B_2|} = C$, we have $|\delta_n(z) - \delta_n(y)| \leq C|z - y|$ all $n \in \mathbb{N}$. Writing $\delta(y) = \limsup_{n \to \infty} \delta_n(y)$ for every $y \in \mathbb{R}$, we only need to show that $\delta(y)$ is continuous for $y \in \mathbb{R}$. Fix $y \in \mathbb{R}$ and suppose that $\lim_{z \to y} \delta(z) \neq \delta(y)$. Then there is $\epsilon > 0$ and a sequence $\{t_m\}$ of real numbers such that $t_m \to y$ satisfying $\delta(t_m) > \delta(y) + \epsilon$ or $\delta(t_m) < \delta(y) - \epsilon$. Consider m satisfying $C|t_m - y| < \frac{\epsilon}{3}$. Then $|\delta_n(t_m) - \delta_n(y)| < \frac{\epsilon}{3}$ for all $n \in \mathbb{N}$.

Suppose that $\delta(t_m) > \delta(y) + \epsilon$. There is a sequence $\{m_k\}$ of natural numbers such that $\delta_{m_k}(t_m) \to \delta(t_m)$ and $|\delta_{m_k}(t_m) - \delta_{m_k}(y)| < \frac{\epsilon}{3}$ for all m_k . We have a contradiction since $\limsup_{k\to\infty} \delta_{m_k}(y) \ge \delta(y) + \frac{2\epsilon}{3}$.

Now assume that $\delta(t_m) < \delta(y) - \epsilon$. There is a natural number N_m such that $\delta_n(t_m) < \delta(y) - \epsilon$ for all $n \ge N_m$ and $|\delta_n(t_m) - \delta_n(y)| < \frac{\epsilon}{3}$ for such n. We have a contradiction since $\limsup_{n\to\infty} \delta_n(y) \le \delta(y) - \frac{2\epsilon}{3}$. It follows that $\dim_{loc}\mu_y(x)$ is a continuous function for y. Dually $\dim_{loc}\mu_y(x)$ is a continuous function for y.

THEOREM 3.4. Let F be a self-similar Cantor set. Fix $y(\neq s) \in \mathbb{R}$ where $a^s + b^s = 1$. Then $\underline{\dim}_{loc}\mu_y(x)$ is a nowhere continuous function for $x \in F$. Similarly $\overline{\dim}_{loc}\mu_y(x)$ is a nowhere continuous function for $x \in F$.

Proof. We note that each $x \in F$ is a limit point of F and the distribution set F(r) is dense in F for each $r \in [0,1]([12])$. Fix $y(\neq s) \in \mathbb{R}$ where $a^s + b^s = 1$. Then $p = \frac{a^y}{a^y + b^y}$. For $z \in F(r)$, $\dim_{loc}\mu_y(z) = g(r,p)$. So $\{\underline{\dim}_{loc}\mu_y(z) : z \in B(x,u), u > 0\} = [\frac{\log p}{\log a}, \frac{\log(1-p)}{\log b}]$ or $[\frac{\log(1-p)}{\log b}, \frac{\log p}{\log a}]$, since $\{\underline{\dim}_{loc}\mu_y(z) : z \in B(x,u), u > 0\}$ contains $\{\dim_{loc}\mu_y(z) : z \in B(x,u), u > 0\}$ contains $\{\underline{\dim}_{loc}\mu_y(z) : z \in B(x,u), u > 0\}$ or $[\frac{\log(1-p)}{\log a}, \frac{\log(1-p)}{\log b}]$ or $[\frac{\log(1-p)}{\log b}, \frac{\log p}{\log a}]$. It follows easily since $[\frac{\log p}{\log a}, \frac{\log(1-p)}{\log b}]$ or $[\frac{\log(1-p)}{\log b}, \frac{\log p}{\log a}]$ has non-empty interior if $y(\neq s) \in \mathbb{R}$ where $a^s + b^s = 1$. It holds dually for the case of $\overline{\dim}_{loc}\mu_y(x)$.

REMARK 3.4. Note that the lower (upper) distribution set $\underline{F}(r)(\overline{F}(r))$ is dense in F for each $r \in [0,1]$ since the distribution set F(r) is dense in F for each $r \in [0,1]([12])$. If $y \neq s$ where $a^s + b^s = 1$, $\{\underline{\dim}_{loc}\mu_y(z) : z \in B(x,u), u > 0\} = [\underline{\log p}_{\log a}, \underline{\log(1-p)}_{\log b}]$ or $[\underline{\log(1-p)}_{\log b}, \underline{\log p}_{\log a}]$ since $\underline{F}(r) = \underline{E}^y_{\alpha}$ where $\alpha = g(r,p)$ and $p = \frac{a^y}{a^y + b^y}$ with 0 and $<math>\overline{F}(r) = \underline{E}^y_{\alpha}$ where $\alpha = g(r,p)$ with $a^s .$ REMARK 3.5. We see that some variation of $\underline{\dim}_{loc}\mu_y(x)(\underline{\dim}_{loc}\mu_y(x))$ is a continuous function for $y \in \mathbb{R}$ for fixed $x \in F$ where F is a deranged Cantor set([6, 7, 10]), which plays an important role in their transformed dimension theories that give better estimation of dimensions of E^y_{α} .

REMARK 3.6. ([8]) We see that $\underline{E}_{\alpha}^{s} = F = \overline{E}_{\alpha}^{s}$ if F is a self-similar Cantor set and $a^{s} + b^{s} = 1$. Further in this case the range of α is $\left[\frac{\log p}{\log a}, \frac{\log(1-p)}{\log b}\right] = \left[\frac{\log(1-p)}{\log b}, \frac{\log p}{\log a}\right] = \{s\}$. We also note that $\underline{\dim}_{loc}\mu_{y}(x)$ and $\overline{\dim}_{loc}\mu_{y}(x)$ are constant functions for $x \in F$ in this case. As in the above Theorem we used to assume in multifractal theory that $\frac{\log p}{\log a} \neq \frac{\log(1-p)}{\log b}$ to avoid the degenerate case .

References

- I.S. Baek, Dimension of the perturbed Cantor set, Real Analysis Exchange, 19 (1993/94), pp. 269-273.
- I. S. Baek, Weak local dimension on deranged Cantor sets, Real Analysis Exchange 26 (2001), pp. 553-558.
- I. S. Baek, Hausdorff dimension of perturbed Cantor sets without some boundedness condition, Acta Math. Hungar. 99 (2003), pp. 279-283.
- 4. I. S. Baek, *Dimensions of measures on perturbed Cantor set*, J. Appl. Math. & Computing (to appear).
- 5. I. S. Baek, *Cantor dimension and its application*, Bull. Korean Math. Soc. (to appear).
- 6. I. S. Baek, Spectra of deranged Cantor set by weak local dimension, preprint.
- 7. I. S. Baek, Multifractal spectra by quasi-self-similar measures on a perturbed Cantor set, preprint.
- 8. I. S. Baek, Relation between spectra of a self-similar Cantor set, preprint.
- 9. I. S. Baek, On a quasi-self-similar measure on a self-similar set on the way to a perturbed Cantor set, preprint.
- 10. I. S. Baek, On transformed dimension, preprint.
- 11. K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons (1997).

 H. H. Lee and I. S. Baek, Dimensions of a Cantor type set and its distribution sets, Kyungpook Math. Journal 32 (1992), pp. 149-152.

13. L. Olsen, Multifractal formalism, Adv. Math. 116 (1995), pp. 82-196.

*

DEPARTMENT OF MATHEMATICS PUSAN UNIVERSITY OF FOREIGN STUDIES PUSAN 608-738, KOREA *E-mail*: isbaek@pufs.ac.kr