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2. Preliminaries

We recall the definition of a deranged Cantor set([2]). Let Xφ =

[0, 1]. We obtain the left subinterval Xi,1 and the right subinterval Xi,2

of Xi by deleting a middle open subinterval of Xi inductively for each

i ∈ {1, 2}n , where n = 0, 1, 2, . . . . Let En = ∪i∈{1,2}nXi. Then En is a

decreasing sequence of closed sets. For each n, we set |Xi,1|/|Xi| = ci,1

and |Xi,2|/|Xi| = ci,2 for all i ∈ {1, 2}n, where n = 0, 1, 2, · · · where

|X| denotes the length of X. We assume that the contraction ratios ci

and gap ratios 1 − (ci,1 + ci,2) are uniformly bounded away from 0. We

call F = ∩∞
n=0En a deranged Cantor set([2]). We note that a deranged

Cantor set satisfying ci,1 = an+1 and ci,2 = bn+1 for all i ∈ {1, 2}n, for

each n = 0, 1, 2, · · · is called a perturbed Cantor set([1]). Further a

perturbed Cantor set with an+1 = a and bn+1 = b for all n = 0, 1, 2, · · ·

is called a self-similar Cantor set([11]).

For i ∈ {1, 2}n, Xi denotes a fundamental interval of the n-stage

of construction of a deranged Cantor set. Let R be the set of all real

numbers and N be the set of all natural numbers. For y ∈ R, we([2])

define a quasi-self-similar measure µy on a deranged Cantor set F to

be a Borel probability measure induced by

µy(Xi) = pi1pi1,i2 · · · pi1,i2,··· ,in

where

pi1,··· ,ik =
cy
i1,··· ,ik−1,ik

cy
i1,··· ,ik−1,1 + cy

i1,··· ,ik−1,2

for each 1 ≤ k ≤ n and i = i1, · · · , in. Then clearly we see that

pi1,··· ,ik−1,2 = 1 − pi1,··· ,ik−1,1.

Remark 2.1. In a perturbed Cantor set F , for y ∈ R we find

pi1,··· ,ik−1,1 = pk =
a

y
k

a
y
k+b

y
k

for each k ∈ N. Further the quasi-self-similar

measure µy on F is a Borel probability measure induced by
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µy(Xi) = r
(1)
i1

r
(2)
i2

· · · r
(n)
in

where r
(k)
ik

=

{

pk for ik = 1

1 − pk for ik = 2
,

i = i1, · · · , ik, · · · , in and 1 ≤ k ≤ n. We note that µy is just a self-

similar measure if F is a self-similar Cantor set. We write µy as γp

where p = ay

ay+by .

For x ∈ F , we write Xn(x) for the n-th level set Xi1···in that con-

tains x. We also note that if x ∈ F , then there is σ ∈ {1, 2}N

such that
⋂∞

n=0 Xσ|n = {x} (Here σ|n = i1, i2, · · · , in where σ =

i1, i2, · · · , in, in+1, · · · ). Hereafter, we use σ ∈ {1, 2}N and x ∈ F as

the same identity freely.

In a self-similar Cantor set F , we can consider a generalized expansion

of x from σ, that is if σ = i1, i2, · · · , ik, ik+1, · · · then the expansion of

x is 0.j1, j2, · · · , jk, jk+1, · · · where jk = 0 if ik = 1 and jk = 2 if ik = 2.

We denote n0(x|k) the number of times the digit 0 occurs in the first k

places of the generalized expansion of x([12]).

For r ∈ [0, 1], we define lower(upper) distribution set F (r)(F (r)) con-

taining the digit 0 in proportion r by

F (r) = {x ∈ F : lim inf
k→∞

n0(x|k)

k
= r},

F (r) = {x ∈ F : lim sup
k→∞

n0(x|k)

k
= r}.

We write F (r) ∩ F (r) as F (r).

The lower and upper local dimension of a finite measure µ at x ∈ R

are defined([11]) by

dimlocµ(x) = lim inf
r→0

log µ(B(x, r))

log r
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dimlocµ(x) = lim sup
r→0

log µ(B(x, r))

log r

where B(x, r) is the closed ball with center x ∈ R and radius r > 0.

If dimlocµ(x) = dimlocµ(x), we call it the local dimension of µ at x

and write it as dimlocµ(x). These local dimensions express the power

law behaviour of µ(B(x, r)) for some r > 0.

For α ≥ 0 define

Ey
α = {x ∈ R| dimloc µy(x) = α}

= {x ∈ R| lim
r→0

log µy(B(x, r))

log r
= α}

Also we write Ey
α (E

y

α) for the set of points at which the lower(upper)

local dimension of µy on F is exactly α, so that

Ey
α = {x : lim inf

r→0

log µy(B(x, r))

log r
= α},

E
y

α = {x : lim sup
r→0

log µy(B(x, r))

log r
= α}.

From now on, dim(E) denotes the Hausdorff dimension of E ∈ R

and Dim(E) denotes the packing dimension of E. In this paper, we

assume that 0 log 0 = 0 for convenience.

3. Main results

Consider a self-similar Cantor set F with two contraction ratios a

and b. Let y ∈ R and consider pqaβy(q)+(1−p)qbβy(q) = 1 and p = ay

ay+by .

For α ≥ 0, the Legendre transform fy(α) of beta function βy is defined

by

fy(α) = inf
−∞<q<∞

{βy(q) + αq}.
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It will be helpful for us to study the relation between the set Xn(x)

and the closed ball B(x, r) ,that is, |Xn(x)| is comparable with r.

Lemma 3.1. Given a Borel probability measure µ on a deranged

Cantor set F , for all x ∈ F ,

lim inf
r→0

log µ(B(x, r))

log r
= lim inf

n→∞

log µ(Xn(x))

log |Xn(x)|

and

lim sup
r→0

log µ(B(x, r))

log r
= lim sup

n→∞

log µ(Xn(x))

log |Xn(x)|
.

Proof. It is obvious from the fact that the contraction ratios are

uniformly bounded away from 0.

Theorem 3.2. Let y ∈ R and p = ay

ay+by . Consider a self-similar

measure γp(= µy) on a self-similar Cantor set F and let r ∈ [0, 1] and

g(r, p) = r log p+(1−r) log(1−p)
r loga+(1−r) log b

. Then dim(Ey
α) = Dim(Ey

α) = g(r, r) where

α = g(r, p).

Proof. From (11.30) (11.35) and (11.50) in [11], we see that the di-

mensions of Ey
α is fy(α) = αq + βy(q) where q and βy(q) satisfies the

two equations such that pqaβy(q) + (1 − p)qbβy(q) = 1 and

α =
pqaβy(q) log p + (1 − p)qbβy(q) log(1 − p)

pqaβy(q) log a + (1 − p)qbβy(q) log b
.

Putting pqaβy(q) = r for q and βy(q) satisfying the above two equations,

we see that r satisfies α = g(r, p). We easily see that g(r, r) = αq +

βy(q).

Remark 3.1. From the proof in the above theorem, we get our result

that dim(Ey
α) = Dim(Ey

α) = g(r, r) where α = g(r, p). However this

result was hinted from the relation between a distribution set and a

subset Ey
α of same local dimension of a self-similar measure([8]).
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Remark 3.2. The calculation from our result in the above theorem
that dim(Ey

α) = Dim(Ey
α) = g(r, r) where α = g(r, p) is much easier to

compute than that of Olsen([11, 13]). That is, it is so hard to find the

values q and βy(q) satisfying the two equations such that pqaβy(q) +(1−

p)qbβy(q) = 1 and

α =
pqaβy(q) log p + (1 − p)qbβy(q) log(1 − p)

pqaβy(q) log a + (1 − p)qbβy(q) log b
.

After finding such two values q and βy(q), we get dim(Ey
α) = Dim(Ey

α) =

fy(α) = αq + βy(q).

Remark 3.3. In the above theorem, when we consider Ey
α, the range

of α is [ log p

loga
, log(1−p)

log b
] or [ log(1−p)

log b
, log p

loga
] which has non-empty interior if

log p

log a
6= log(1−p)

log b
.

We give an example to show how much our calculation is easier than

that of Olsen.

Example 3.1. Consider a self-similar Cantor set with a = 1
2

and

b = 1
4
. Then there is a solution y such that 1

2
= ay

ay+by . That is p = 1
2
.

In fact y = 0. Now we find the dimensions of E0
3
4

. Our calculation is

easy. That is we find r such that 3
4

=
r log 1

2
+(1−r) log 1

2

r log 1
2
+(1−r) log 1

4

= g(r, 3
4
). In fact

r = 2
3
. Now we easily find g(2

3
, 2

3
) = log 4−log 27

− log 16
. So the dimensions of E0

3
4

are log 4−log 27
− log 16

. That of Olsen is so complicated. Sometimes it is almost

impossible to find algebraically the values q and βy(q) satisfying the

two equations such that pqaβy(q) + (1 − p)qbβy(q) = 1 and

α =
pqaβy(q) log p + (1 − p)qbβy(q) log(1 − p)

pqaβy(q) log a + (1 − p)qbβy(q) log b
.

In this case we adjusted the numbers to solve it possible even though

it is also complicated. We solve 3
4

=
1
2

q 1
2

βy(q)
log 1

2
+(1− 1

2
)q 1

4

βy (q)
log(1− 1

2
)

1
2

q 1
2

βy(q)
log 1

2
+(1− 1

2
)q 1

4

βy(q)
log 1

4

and
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find βy(q) = 1. From 1
2

q 1
2

βy(q)
+(1− 1

2
)q 1

4

βy(q)
= 1, we see that q =

log 4
3

log 1
2

.

So we have f0(3
4
) = 3

4

log 4
3

log 1
2

+ 1 = log 4−log 27
− log 16

.

Now we discuss the continuity of the lower(upper) local dimension

function dimlocµy(x)(dimlocµy(x)) of µy at x ∈ F and y ∈ R.

Theorem 3.3. Fix x ∈ F where F is a self-similar Cantor set. Then

dimlocµy(x) is a continuous function for y ∈ R. Similarly dimlocµy(x) is

a continuous function for y ∈ R.

Proof. Fix x ∈ F . Let δn(y) =
∑n

k=1 log(ay+by )

log |Xn(x)|
for y ∈ R. We note

that dimlocµy(x) = y− lim supn→∞ δn(y) from Lemma 3.1. Assume that

B1 = min{a, b} and B2 = max{a, b}. Clearly 0 < B1 ≤ a, b ≤ B2 < 1

for all k ∈ N. Consider h(z) = az+bz

ay+by for fixed y. From the mean value

theorem we see that h(z) − h(y) = h′(w)(z − y) for some w between z

and y. Then

|
az + bz

ay + by
− 1| ≤

| log B1|

B1
|z − y|

for all k ∈ N. Hence

|δn(z) − δn(y)| ≤
K|z − y|

| log B2|

for all n ∈ N where 0 < K < ∞ which is from B1 and independent of

n. Putting K
| logB2|

= C , we have |δn(z) − δn(y)| ≤ C|z − y| all n ∈ N.

Writing δ(y) = lim supn→∞ δn(y) for every y ∈ R, we only need to

show that δ(y) is continuous for y ∈ R. Fix y ∈ R and suppose that

limz→y δ(z) 6= δ(y). Then there is ǫ > 0 and a sequence {tm} of real

numbers such that tm → y satisfying δ(tm) > δ(y)+ǫ or δ(tm) < δ(y)−ǫ.

Consider m satisfying C|tm − y| < ǫ
3
. Then |δn(tm)− δn(y)| < ǫ

3
for all

n ∈ N.
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Suppose that δ(tm) > δ(y) + ǫ. There is a sequence {mk} of natural

numbers such that δmk
(tm) → δ(tm) and |δmk

(tm) − δmk
(y)| < ǫ

3
for all

mk. We have a contradiction since lim supk→∞ δmk
(y) ≥ δ(y) + 2ǫ

3
.

Now assume that δ(tm) < δ(y) − ǫ. There is a natural number Nm

such that δn(tm) < δ(y) − ǫ for all n ≥ Nm and |δn(tm) − δn(y)| < ǫ
3

for such n. We have a contradiction since lim supn→∞ δn(y) ≤ δ(y) −
2ǫ
3
. It follows that dimlocµy(x) is a continuous function for y. Dually

dimlocµy(x) is a continuous function for y.

Theorem 3.4. Let F be a self-similar Cantor set. Fix y( 6= s) ∈ R

where as + bs = 1. Then dimlocµy(x) is a nowhere continuous function

for x ∈ F . Similarly dimlocµy(x) is a nowhere continuous function for

x ∈ F .

Proof. We note that each x ∈ F is a limit point of F and the distri-

bution set F (r) is dense in F for each r ∈ [0, 1]([12]). Fix y( 6= s) ∈ R

where as +bs = 1. Then p = ay

ay+by . For z ∈ F (r), dimlocµy(z) = g(r, p).

So {dimlocµy(z) : z ∈ B(x, u), u > 0} = [ log p

loga
, log(1−p)

log b
] or [ log(1−p)

log b
, log p

loga
],

since {dimlocµy(z) : z ∈ B(x, u), u > 0} contains {dimlocµy(z) : z ∈

B(x, u), u > 0 and z ∈ F (r) for some r ∈ [0, 1]} = [ log p

loga
, log(1−p)

log b
] or

[ log(1−p)
log b

, log p

log a
]. It follows easily since [ log p

loga
, log(1−p)

log b
] or [ log(1−p)

log b
, log p

log a
] has

non-empty interior if y( 6= s) ∈ R where as + bs = 1. It holds dually for

the case of dimlocµy(x).

Remark 3.4. Note that the lower(upper) distribution set F (r)(F (r))

is dense in F for each r ∈ [0, 1] since the distribution set F (r) is

dense in F for each r ∈ [0, 1]([12]). If y 6= s where as + bs = 1,

{dimlocµy(z) : z ∈ B(x, u), u > 0} = [ log p

loga
, log(1−p)

log b
] or [ log(1−p)

log b
, log p

log a
]

since F (r) = Ey
α where α = g(r, p) and p = ay

ay+by with 0 < p < as and

F (r) = Ey
α where α = g(r, p) with as < p < 1([8]).
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Remark 3.5. We see that some variation of dimlocµy(x)(dimlocµy(x))

is a continuous function for y ∈ R for fixed x ∈ F where F is a de-

ranged Cantor set([6, 7, 10]), which plays an important role in their

transformed dimension theories that give better estimation of dimen-

sions of Ey
α.

Remark 3.6. ([8]) We see that Es
α = F = E

s

α if F is a self-similar

Cantor set and as + bs = 1. Further in this case the range of α is

[ log p

loga
, log(1−p)

log b
] = [ log(1−p)

log b
, log p

loga
] = {s}. We also note that dimlocµy(x)

and dimlocµy(x) are constant functions for x ∈ F in this case. As

in the above Theorem we used to assume in multifractal theory that
log p

log a
6= log(1−p)

log b
to avoid the degenerate case .
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