ON A SELF-SIMILAR MEASURE ON A SELF-SIMILAR CANTOR SET

In-Soo Baek*

Abstract

We compare a self-similar measure on a self-similar Cantor set with a quasi-self-similar measure on a deranged Cantor set. Further we study some properties of a self-similar measure on a selfsimilar Cantor set.

1. Introduction

Recently the multifractal spectrum by a self-similar measure of a self-similar Cantor set was studied([11, 13]) for the investigation of its geometrical properties. We([2,5]) studied a deranged Cantor set which is the most generalized Cantor set which has a local structure of a perturbed Cantor $\operatorname{set}([1,3,4,5,6])$, which is also a generalized form of self-similar Cantor set. In this paper, we compare the self-similar measure with a quasi-self-similar measure which also gives a spectrum of a deranged Cantor $\operatorname{set}([7,10])$. Recently we found the relation between a subset composing a spectrum by a self-similar measure of a self-similar Cantor set and a distribution set of the self-similar Cantor $\operatorname{set}([8,9])$. On the basis of the relation, we introduce an easy closed form of computing dimensions of a subset of the same local dimension of a self-similar measure on a self-similar Cantor set and give an example. Further we discuss some properties of the function of local dimension of self-similar measure at a point in a self-similar Cantor set, which plays an important role in the transformed dimension theory $([7,10])$.

[^0]
2. Preliminaries

We recall the definition of a deranged Cantor set([2]). Let $X_{\phi}=$ $[0,1]$. We obtain the left subinterval $X_{\mathfrak{i}, 1}$ and the right subinterval $X_{i, 2}$ of $X_{\mathfrak{i}}$ by deleting a middle open subinterval of $X_{\mathfrak{i}}$ inductively for each $\mathfrak{i} \in\{1,2\}^{n}$, where $n=0,1,2, \ldots$. Let $E_{n}=\cup_{\mathfrak{i} \in\{1,2\}^{n}} X_{\mathfrak{i}}$. Then E_{n} is a decreasing sequence of closed sets. For each n, we set $\left|X_{i, 1}\right| /\left|X_{\mathfrak{i}}\right|=c_{i, 1}$ and $\left|X_{\mathfrak{i}, 2}\right| /\left|X_{\mathfrak{i}}\right|=c_{\mathfrak{i}, 2}$ for all $\mathfrak{i} \in\{1,2\}^{n}$, where $n=0,1,2, \cdots$ where $|X|$ denotes the length of X. We assume that the contraction ratios c_{i} and gap ratios $1-\left(c_{\mathbf{i}, 1}+c_{\mathrm{i}, 2}\right)$ are uniformly bounded away from 0 . We call $F=\cap_{n=0}^{\infty} E_{n}$ a deranged Cantor set([2]). We note that a deranged Cantor set satisfying $c_{\mathfrak{i}, 1}=a_{n+1}$ and $c_{\mathrm{i}, 2}=b_{n+1}$ for all $\mathfrak{i} \in\{1,2\}^{n}$, for each $n=0,1,2, \cdots$ is called a perturbed Cantor set([1]). Further a perturbed Cantor set with $a_{n+1}=a$ and $b_{n+1}=b$ for all $n=0,1,2, \cdots$ is called a self-similar Cantor set([11]).

For $\mathfrak{i} \in\{1,2\}^{n}, X_{\mathfrak{i}}$ denotes a fundamental interval of the n-stage of construction of a deranged Cantor set. Let \mathbb{R} be the set of all real numbers and \mathbb{N} be the set of all natural numbers. For $y \in \mathbb{R}$, we([2]) define a quasi-self-similar measure μ_{y} on a deranged Cantor set F to be a Borel probability measure induced by

$$
\mu_{y}\left(X_{\mathfrak{i}}\right)=p_{i_{1}} p_{i_{1}, i_{2}} \cdots p_{i_{1}, i_{2}, \cdots, i_{n}}
$$

where

$$
p_{i_{1}, \cdots, i_{k}}=\frac{c_{i_{1}, \cdots, i_{k-1}, i_{k}}^{y}}{c_{i_{1}, \cdots, i_{k-1}, 1}^{y}+c_{i_{1}, \cdots, i_{k-1}, 2}^{y}}
$$

for each $1 \leq k \leq n$ and $\mathfrak{i}=i_{1}, \cdots, i_{n}$. Then clearly we see that $p_{i_{1}, \cdots, i_{k-1}, 2}=1-p_{i_{1}, \cdots, i_{k-1}, 1}$.

Remark 2.1. In a perturbed Cantor set F, for $y \in \mathbb{R}$ we find $p_{i_{1}, \cdots, i_{k-1}, 1}=p_{k}=\frac{a_{k}^{y}}{a_{k}^{y}+b_{k}^{y}}$ for each $k \in \mathbb{N}$. Further the quasi-self-similar measure μ_{y} on F is a Borel probability measure induced by

$$
\mu_{y}\left(X_{\mathfrak{i}}\right)=r_{i_{1}}^{(1)} r_{i_{2}}^{(2)} \cdots r_{i_{n}}^{(n)} \quad \text { where } \quad r_{i_{k}}^{(k)}= \begin{cases}p_{k} & \text { for } i_{k}=1 \\ 1-p_{k} & \text { for } i_{k}=2\end{cases}
$$

$\mathfrak{i}=i_{1}, \cdots, i_{k}, \cdots, i_{n}$ and $1 \leq k \leq n$. We note that μ_{y} is just a selfsimilar measure if F is a self-similar Cantor set. We write μ_{y} as γ_{p} where $p=\frac{a^{y}}{a^{y}+b^{y}}$.

For $x \in F$, we write $X_{n}(x)$ for the n-th level set $X_{i_{1} \cdots i_{n}}$ that contains x. We also note that if $x \in F$, then there is $\sigma \in\{1,2\}^{N}$ such that $\bigcap_{n=0}^{\infty} X_{\sigma \mid n}=\{x\}$ (Here $\sigma \mid n=i_{1}, i_{2}, \cdots$, i_{n} where $\sigma=$ $\left.i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}, \cdots\right)$. Hereafter, we use $\sigma \in\{1,2\}^{N}$ and $x \in F$ as the same identity freely.
In a self-similar Cantor set F, we can consider a generalized expansion of x from σ, that is if $\sigma=i_{1}, i_{2}, \cdots, i_{k}, i_{k+1}, \cdots$ then the expansion of x is $0 . j_{1}, j_{2}, \cdots, j_{k}, j_{k+1}, \cdots$ where $j_{k}=0$ if $i_{k}=1$ and $j_{k}=2$ if $i_{k}=2$. We denote $n_{0}(x \mid k)$ the number of times the digit 0 occurs in the first k places of the generalized expansion of $x([12])$.
For $r \in[0,1]$, we define lower(upper) distribution set $\underline{F}(r)(\bar{F}(r))$ containing the digit 0 in proportion r by

$$
\begin{aligned}
& \underline{F}(r)=\left\{x \in F: \liminf _{k \rightarrow \infty} \frac{n_{0}(x \mid k)}{k}=r\right\} \\
& \bar{F}(r)=\left\{x \in F: \limsup _{k \rightarrow \infty} \frac{n_{0}(x \mid k)}{k}=r\right\}
\end{aligned}
$$

We write $\underline{F}(r) \cap \bar{F}(r)$ as $F(r)$.
The lower and upper local dimension of a finite measure μ at $x \in \mathbb{R}$ are defined $([11])$ by

$$
\underline{\operatorname{dim}}_{l o c} \mu(x)=\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}
$$

$$
\overline{\operatorname{dim}}_{l o c} \mu(x)=\limsup _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}
$$

where $B(x, r)$ is the closed ball with center $x \in \mathbb{R}$ and radius $r>0$.
If $\underline{\operatorname{dim}}_{\text {loc }} \mu(x)=\overline{\operatorname{dim}}_{l o c} \mu(x)$, we call it the local dimension of μ at x and write it as $\operatorname{dim}_{l o c} \mu(x)$. These local dimensions express the power law behaviour of $\mu(B(x, r))$ for some $r>0$.

For $\alpha \geq 0$ define

$$
\begin{aligned}
E_{\alpha}^{y} & =\left\{x \in \mathbb{R} \mid \operatorname{dim}_{l o c} \mu_{y}(x)=\alpha\right\} \\
& =\left\{x \in \mathbb{R} \left\lvert\, \lim _{r \rightarrow 0} \frac{\log \mu_{y}(B(x, r))}{\log r}=\alpha\right.\right\}
\end{aligned}
$$

Also we write $\underline{E}_{\alpha}^{y}\left(\bar{E}_{\alpha}^{y}\right)$ for the set of points at which the lower(upper) local dimension of μ_{y} on F is exactly α, so that

$$
\begin{aligned}
& \underline{E}_{\alpha}^{y}=\left\{x: \liminf _{r \rightarrow 0} \frac{\log \mu_{y}(B(x, r))}{\log r}=\alpha\right\} \\
& \bar{E}_{\alpha}^{y}=\left\{x: \limsup _{r \rightarrow 0} \frac{\log \mu_{y}(B(x, r))}{\log r}=\alpha\right\}
\end{aligned}
$$

From now on, $\operatorname{dim}(E)$ denotes the Hausdorff dimension of $E \in \mathbb{R}$ and $\operatorname{Dim}(E)$ denotes the packing dimension of E. In this paper, we assume that $0 \log 0=0$ for convenience.

3. Main results

Consider a self-similar Cantor set F with two contraction ratios a and b. Let $y \in \mathbb{R}$ and consider $p^{q} a^{\beta^{y}(q)}+(1-p)^{q} b^{\beta^{y}(q)}=1$ and $p=\frac{a^{y}}{a^{y}+b^{y}}$. For $\alpha \geq 0$, the Legendre transform $f^{y}(\alpha)$ of beta function β^{y} is defined by

$$
f^{y}(\alpha)=\inf _{-\infty<q<\infty}\left\{\beta^{y}(q)+\alpha q\right\}
$$

It will be helpful for us to study the relation between the set $X_{n}(x)$ and the closed ball $B(x, r)$, that is, $\left|X_{n}(x)\right|$ is comparable with r.

Lemma 3.1. Given a Borel probability measure μ on a deranged Cantor set F, for all $x \in F$,

$$
\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}=\liminf _{n \rightarrow \infty} \frac{\log \mu\left(X_{n}(x)\right)}{\log \left|X_{n}(x)\right|}
$$

and

$$
\limsup _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}=\limsup _{n \rightarrow \infty} \frac{\log \mu\left(X_{n}(x)\right)}{\log \left|X_{n}(x)\right|}
$$

Proof. It is obvious from the fact that the contraction ratios are uniformly bounded away from 0 .

Theorem 3.2. Let $y \in \mathbb{R}$ and $p=\frac{a^{y}}{a^{y}+b^{y}}$. Consider a self-similar measure $\gamma_{p}\left(=\mu_{y}\right)$ on a self-similar Cantor set F and let $r \in[0,1]$ and $g(r, p)=\frac{r \log p+(1-r) \log (1-p)}{r \log a+(1-r) \log b}$. Then $\operatorname{dim}\left(E_{\alpha}^{y}\right)=\operatorname{Dim}\left(E_{\alpha}^{y}\right)=g(r, r)$ where $\alpha=g(r, p)$.

Proof. From (11.30) (11.35) and (11.50) in [11], we see that the dimensions of E_{α}^{y} is $f^{y}(\alpha)=\alpha q+\beta^{y}(q)$ where q and $\beta^{y}(q)$ satisfies the two equations such that $p^{q} a^{\beta^{y}(q)}+(1-p)^{q} b^{\beta^{y}(q)}=1$ and

$$
\alpha=\frac{p^{q} a^{\beta^{y}(q)} \log p+(1-p)^{q} b^{\beta^{y}(q)} \log (1-p)}{p^{q} a^{\beta^{y}(q)} \log a+(1-p)^{q} b^{\beta^{y}(q)} \log b} .
$$

Putting $p^{q} a^{\beta^{y}(q)}=r$ for q and $\beta^{y}(q)$ satisfying the above two equations, we see that r satisfies $\alpha=g(r, p)$. We easily see that $g(r, r)=\alpha q+$ $\beta^{y}(q)$.

Remark 3.1. From the proof in the above theorem, we get our result that $\operatorname{dim}\left(E_{\alpha}^{y}\right)=\operatorname{Dim}\left(E_{\alpha}^{y}\right)=g(r, r)$ where $\alpha=g(r, p)$. However this result was hinted from the relation between a distribution set and a subset E_{α}^{y} of same local dimension of a self-similar measure([8]).

Remark 3.2. The calculation from our result in the above theorem that $\operatorname{dim}\left(E_{\alpha}^{y}\right)=\operatorname{Dim}\left(E_{\alpha}^{y}\right)=g(r, r)$ where $\alpha=g(r, p)$ is much easier to compute than that of $\operatorname{Olsen}([11,13])$. That is, it is so hard to find the values q and $\beta^{y}(q)$ satisfying the two equations such that $p^{q} a^{\beta^{y}(q)}+(1-$ $p)^{q} b^{\beta^{y}(q)}=1$ and

$$
\alpha=\frac{p^{q} a^{\beta^{y}(q)} \log p+(1-p)^{q} b^{\beta^{y}(q)} \log (1-p)}{p^{q} a^{\beta^{y}(q)} \log a+(1-p)^{q} b^{\beta^{y}(q)} \log b} .
$$

After finding such two values q and $\beta^{y}(q)$, we get $\operatorname{dim}\left(E_{\alpha}^{y}\right)=\operatorname{Dim}\left(E_{\alpha}^{y}\right)=$ $f^{y}(\alpha)=\alpha q+\beta^{y}(q)$.

REmARK 3.3. In the above theorem, when we consider E_{α}^{y}, the range of α is $\left[\frac{\log p}{\log a}, \frac{\log (1-p)}{\log b}\right]$ or $\left[\frac{\log (1-p)}{\log b}, \frac{\log p}{\log a}\right]$ which has non-empty interior if $\frac{\log p}{\log a} \neq \frac{\log (1-p)}{\log b}$.

We give an example to show how much our calculation is easier than that of Olsen.

Example 3.1. Consider a self-similar Cantor set with $a=\frac{1}{2}$ and $b=\frac{1}{4}$. Then there is a solution y such that $\frac{1}{2}=\frac{a^{y}}{a^{y}+b^{y}}$. That is $p=\frac{1}{2}$. In fact $y=0$. Now we find the dimensions of $E_{\frac{3}{4}}^{0}$. Our calculation is easy. That is we find r such that $\frac{3}{4}=\frac{r \log \frac{1}{2}+(1-r) \log \frac{1}{2}}{r \log \frac{1}{2}+(1-r) \log \frac{1}{4}}=g\left(r, \frac{3}{4}\right)$. In fact $r=\frac{2}{3}$. Now we easily find $g\left(\frac{2}{3}, \frac{2}{3}\right)=\frac{\log 4-\log 27}{-\log 16}$. So the dimensions of $E_{\frac{3}{4}}^{0}$ $\operatorname{are} \frac{\log 4-\log 27}{-\log 16}$. That of Olsen is so complicated. Sometimes it is almost impossible to find algebraically the values q and $\beta^{y}(q)$ satisfying the two equations such that $p^{q} a^{\beta^{y}(q)}+(1-p)^{q} b^{\beta^{y}(q)}=1$ and

$$
\alpha=\frac{p^{q} a^{\beta^{y}(q)} \log p+(1-p)^{q} b^{\beta^{y}(q)} \log (1-p)}{p^{q} a^{\beta^{y}(q)} \log a+(1-p)^{q} b^{\beta^{y}(q)} \log b} .
$$

In this case we adjusted the numbers to solve it possible even though

find $\beta^{y}(q)=1$. From $\frac{1}{2} \frac{1}{2}^{\beta^{y}(q)}+\left(1-\frac{1}{2}\right)^{q} \frac{1}{4}{ }^{\beta^{y}(q)}=1$, we see that $q=\frac{\log \frac{4}{3}}{\log \frac{1}{2}}$. So we have $f^{0}\left(\frac{3}{4}\right)=\frac{3}{4} \frac{\log \frac{4}{3}}{\log \frac{1}{2}}+1=\frac{\log 4-\log 27}{-\log 16}$.

Now we discuss the continuity of the lower(upper) local dimension function $\underline{\operatorname{dim}}_{l o c} \mu_{y}(x)\left(\overline{\operatorname{dim}}_{l o c} \mu_{y}(x)\right)$ of μ_{y} at $x \in F$ and $y \in \mathbb{R}$.

Theorem 3.3. Fix $x \in F$ where F is a self-similar Cantor set. Then $\underline{\operatorname{dim}}_{l o c} \mu_{y}(x)$ is a continuous function for $y \in \mathbb{R}$. Similarly $\overline{\operatorname{dim}}_{l o c} \mu_{y}(x)$ is a continuous function for $y \in \mathbb{R}$.

Proof. Fix $x \in F$. Let $\delta_{n}(y)=\frac{\sum_{k=1}^{n} \log \left(a^{y}+b^{y}\right)}{\log \left|X_{n}(x)\right|}$ for $y \in \mathbb{R}$. We note that $\underline{\operatorname{dim}}_{l o c} \mu_{y}(x)=y-\lim \sup _{n \rightarrow \infty} \delta_{n}(y)$ from Lemma 3.1. Assume that $B_{1}=\min \{a, b\}$ and $B_{2}=\max \{a, b\}$. Clearly $0<B_{1} \leq a, b \leq B_{2}<1$ for all $k \in \mathbb{N}$. Consider $h(z)=\frac{a^{z}+b^{z}}{a^{y}+b^{y}}$ for fixed y. From the mean value theorem we see that $h(z)-h(y)=h^{\prime}(w)(z-y)$ for some w between z and y. Then

$$
\left|\frac{a^{z}+b^{z}}{a^{y}+b^{y}}-1\right| \leq \frac{\left|\log B_{1}\right|}{B_{1}}|z-y|
$$

for all $k \in \mathbb{N}$. Hence

$$
\left|\delta_{n}(z)-\delta_{n}(y)\right| \leq \frac{K|z-y|}{\left|\log B_{2}\right|}
$$

for all $n \in \mathbb{N}$ where $0<K<\infty$ which is from B_{1} and independent of n. Putting $\frac{K}{\left|\log B_{2}\right|}=C$, we have $\left|\delta_{n}(z)-\delta_{n}(y)\right| \leq C|z-y|$ all $n \in \mathbb{N}$. Writing $\delta(y)=\lim \sup _{n \rightarrow \infty} \delta_{n}(y)$ for every $y \in \mathbb{R}$, we only need to show that $\delta(y)$ is continuous for $y \in \mathbb{R}$. Fix $y \in \mathbb{R}$ and suppose that $\lim _{z \rightarrow y} \delta(z) \neq \delta(y)$. Then there is $\epsilon>0$ and a sequence $\left\{t_{m}\right\}$ of real numbers such that $t_{m} \rightarrow y$ satisfying $\delta\left(t_{m}\right)>\delta(y)+\epsilon$ or $\delta\left(t_{m}\right)<\delta(y)-\epsilon$. Consider m satisfying $C\left|t_{m}-y\right|<\frac{\epsilon}{3}$. Then $\left|\delta_{n}\left(t_{m}\right)-\delta_{n}(y)\right|<\frac{\epsilon}{3}$ for all $n \in \mathbb{N}$.

Suppose that $\delta\left(t_{m}\right)>\delta(y)+\epsilon$. There is a sequence $\left\{m_{k}\right\}$ of natural numbers such that $\delta_{m_{k}}\left(t_{m}\right) \rightarrow \delta\left(t_{m}\right)$ and $\left|\delta_{m_{k}}\left(t_{m}\right)-\delta_{m_{k}}(y)\right|<\frac{\epsilon}{3}$ for all m_{k}. We have a contradiction since ${\lim \sup _{k \rightarrow \infty}} \delta_{m_{k}}(y) \geq \delta(y)+\frac{2 \epsilon}{3}$.

Now assume that $\delta\left(t_{m}\right)<\delta(y)-\epsilon$. There is a natural number N_{m} such that $\delta_{n}\left(t_{m}\right)<\delta(y)-\epsilon$ for all $n \geq N_{m}$ and $\left|\delta_{n}\left(t_{m}\right)-\delta_{n}(y)\right|<\frac{\epsilon}{3}$ for such n. We have a contradiction since $\lim \sup _{n \rightarrow \infty} \delta_{n}(y) \leq \delta(y)-$ $\frac{2 \epsilon}{3}$. It follows that $\underline{\operatorname{dim}}_{l o c} \mu_{y}(x)$ is a continuous function for y. Dually $\overline{\operatorname{dim}}_{l o c} \mu_{y}(x)$ is a continuous function for y.

Theorem 3.4. Let F be a self-similar Cantor set. Fix $y(\neq s) \in \mathbb{R}$ where $a^{s}+b^{s}=1$. Then $\underline{\operatorname{dim}}_{l o c} \mu_{y}(x)$ is a nowhere continuous function for $x \in F$. Similarly $\overline{\operatorname{dim}}_{l o c} \mu_{y}(x)$ is a nowhere continuous function for $x \in F$.

Proof. We note that each $x \in F$ is a limit point of F and the distribution set $F(r)$ is dense in F for each $r \in[0,1]([12])$. Fix $y(\neq s) \in \mathbb{R}$ where $a^{s}+b^{s}=1$. Then $p=\frac{a^{y}}{a^{y}+b^{y}}$. For $z \in F(r), \operatorname{dim}_{l o c} \mu_{y}(z)=g(r, p)$. So $\left\{\underline{\operatorname{dim}}_{l o c} \mu_{y}(z): z \in B(x, u), u>0\right\}=\left[\frac{\log p}{\log a}, \frac{\log (1-p)}{\log b}\right]$ or $\left[\frac{\log (1-p)}{\log b}, \frac{\log p}{\log a}\right]$, since $\left\{\underline{\operatorname{dim}}_{l o c} \mu_{y}(z): z \in B(x, u), u>0\right\}$ contains $\left\{\operatorname{dim}_{l o c} \mu_{y}(z): z \in\right.$ $B(x, u), u>0$ and $z \in F(r)$ for some $r \in[0,1]\}=\left[\frac{\log p}{\log a}, \frac{\log (1-p)}{\log b}\right]$ or $\left[\frac{\log (1-p)}{\log b}, \frac{\log p}{\log a}\right]$. It follows easily since $\left[\frac{\log p}{\log a}, \frac{\log (1-p)}{\log b}\right]$ or $\left[\frac{\log (1-p)}{\log b}, \frac{\log p}{\log a}\right]$ has non-empty interior if $y(\neq s) \in \mathbb{R}$ where $a^{s}+b^{s}=1$. It holds dually for the case of $\overline{\operatorname{dim}}_{l o c} \mu_{y}(x)$.

Remark 3.4. Note that the lower(upper) distribution set $\underline{F}(r)(\bar{F}(r))$ is dense in F for each $r \in[0,1]$ since the distribution set $F(r)$ is dense in F for each $r \in[0,1]([12])$. If $y \neq s$ where $a^{s}+b^{s}=1$, $\left\{\underline{\operatorname{dim}}_{l o c} \mu_{y}(z): z \in B(x, u), u>0\right\}=\left[\frac{\log p}{\log a}, \frac{\log (1-p)}{\log b}\right]$ or $\left[\frac{\log (1-p)}{\log b}, \frac{\log p}{\log a}\right]$ since $\underline{F}(r)=\underline{E}_{\alpha}^{y}$ where $\alpha=g(r, p)$ and $p=\frac{a^{y}}{a^{y}+b^{y}}$ with $0<p<a^{s}$ and $\bar{F}(r)=\underline{E}_{\alpha}^{y}$ where $\alpha=g(r, p)$ with $a^{s}<p<1([8])$.

REmARK 3.5. We see that some variation of $\underline{\operatorname{dim}}_{l o c} \mu_{y}(x)\left(\overline{\operatorname{dim}}_{l o c} \mu_{y}(x)\right)$ is a continuous function for $y \in \mathbb{R}$ for fixed $x \in F$ where F is a deranged Cantor set([6, 7, 10]), which plays an important role in their transformed dimension theories that give better estimation of dimensions of E_{α}^{y}.

Remark 3.6. ([8]) We see that $\underline{E}_{\alpha}^{s}=F=\bar{E}_{\alpha}^{s}$ if F is a self-similar Cantor set and $a^{s}+b^{s}=1$. Further in this case the range of α is $\left[\frac{\log p}{\log a}, \frac{\log (1-p)}{\log b}\right]=\left[\frac{\log (1-p)}{\log b}, \frac{\log p}{\log a}\right]=\{s\}$. We also note that $\underline{\operatorname{dim}}_{l o c} \mu_{y}(x)$ and $\overline{\operatorname{dim}}_{l o c} \mu_{y}(x)$ are constant functions for $x \in F$ in this case. As in the above Theorem we used to assume in multifractal theory that $\frac{\log p}{\log a} \neq \frac{\log (1-p)}{\log b}$ to avoid the degenerate case .

References

1. I.S. Baek, Dimension of the perturbed Cantor set, Real Analysis Exchange, 19 (1993/94), pp. 269-273.
2. I. S. Baek, Weak local dimension on deranged Cantor sets, Real Analysis Exchange 26 (2001), pp. 553-558.
3. I. S. Baek, Hausdorff dimension of perturbed Cantor sets without some boundedness condition, Acta Math. Hungar. 99 (2003), pp. 279-283.
4. I. S. Baek, Dimensions of measures on perturbed Cantor set, J. Appl. Math. \& Computing (to appear).
5. I. S. Baek, Cantor dimension and its application, Bull. Korean Math. Soc. (to appear).
6. I. S. Baek, Spectra of deranged Cantor set by weak local dimension, preprint.
7. I. S. Baek, Multifractal spectra by quasi-self-similar measures on a perturbed Cantor set, preprint.
8. I. S. Baek, Relation between spectra of a self-similar Cantor set, preprint.
9. I. S. Baek, On a quasi-self-similar measure on a self-similar set on the way to a perturbed Cantor set, preprint.
10. I. S. Baek, On transformed dimension, preprint.
11. K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons (1997).
12. H. H. Lee and I. S. Baek, Dimensions of a Cantor type set and its distribution sets, Kyungpook Math. Journal 32 (1992), pp. 149-152.
13. L. Olsen, Multifractal formalism, Adv. Math. 116 (1995), pp. 82-196.

*

Department of Mathematics
Pusan University of Foreign Studies
Pusan 608-738, Korea
E-mail: isbaek@pufs.ac.kr

[^0]: Received by the editors on August 04, 2003.
 2000 Mathematics Subject Classifications : Primary 28A78.
 Key words and phrases: Hausdorff dimension, packing dimension, Cantor set, self-similar measure.

