Evaluation of Exogenous Promoters for Use in Brachiaria brizantha Transformation

  • Published : 2003.06.01

Abstract

Brachiaria (Poaceae) is the most important forage genus for cattle production in Brazil. The genetic breeding of this genus is limited by the incompatibility among species, differences in ploidy level and the natural cloning of plants by apomixis (Valle and Miles 1992). However, plant regeneration via tissue culture methods and genetic engineering provide an opportunity to introduce new characteristics in plants of this genus. We have developed methods for the 'genetic modification of Brachiaria brizantha cv. Marandu via biolistic transformation. A higher number of shoots was obtained with 4 mg/L 2.4-diclorophenoxyacetic acid and 0.2 mg/L benzylaminopurine in calli induction medium and 0.1 mg/L naphtaleneacetic acid and 4.0 mg/L kinetin in shoot regeneration medium. A selection curve for mannose was determined to use phospho mannose isomerase (PMI) gene of Escherichia coli as a selection marker. Calli formation was inhibited from 5 g/L mannose, even in the presence of sucrose while calli that were formed in the presence of mannose failed to develop embryos showing that PMI gene can be used for selection of transformants of this grass. Different promoters were tested to evaluate the efficiency based on the detection of the GUS gene expression (Jefferson et al. 1987). The monocot promoters, act1-D and ubi-1, resulted in higher expression levels than dicot promoters, ubi-3 and act-2, or the CaMV35S and CVMV promoters.

Keywords

References

  1. TAG v.121 Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max CL) plants at high frequency Aragao FJL;Sarokin L;Vianna GR;Rech EL
  2. Ver Cytol Biol Veg Bot v.TXXIII Female gametophyte development in apomictic and sexual Brachiaria brizantha (Poaceae) Araujo ACG;Mukhambetzhanov S;Pozzobon MT;Santana EF;Carneiro VTC
  3. Physiol Plant v.45 Plant regeneration from mesophyll protoplasts of several Nicotiana species Bourgin, JP;Chupeau Y;Missonier C https://doi.org/10.1111/j.1399-3054.1979.tb01702.x
  4. Plant J v.2 Transgenic sugarcane plants via microprojectile bombardment Bower R;Birch R
  5. Mol Gen Genet v.213 Characterization of a polyubiquitin gene from Arabidopsis thaliana Burke TJ;Callis J;Viestra RD https://doi.org/10.1007/BF00339613
  6. Plant Mol Biol v.18 Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation Christensen AH;Sharrock RA;Quail PH https://doi.org/10.1007/BF00020010
  7. Transgenic Research v.5 Ubiquitin Promoter-based vector for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants Christensen AH;Quail PH https://doi.org/10.1007/BF01969712
  8. Bio/Technology v.9 Production of transgenic rice (Oriza sativa) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos Christou P;Ford TLR;Kafron M https://doi.org/10.1038/nbt1091-957
  9. Plant Mol Biol v.23 Activity of a maize ubiquitin promoter in transgenic rice Cornejo M;Luth D;Blankenship KM;Anderson OD;Blechl AE https://doi.org/10.1007/BF00019304
  10. Plant Sci v.101 A bifunctional fusion between beta-glucuronidase and neomycin phosphotransferase: A broad-spectrum marker enzyme for plants Datla RS;Hammerlindt JK;Pelcher LE;Crosby WL;Selvaraj G
  11. Acta Bot Cracov Ser Bot v.41 Apomixis in Brachiaria decumbens Stapf : Qametophytic development and reproductive calendar Dusi DMA;Willemse MTM
  12. Annals of Botany v.22 The carbohydrate nutrition of tomato roots Ferguson JD;Street HE https://doi.org/10.1093/oxfordjournals.aob.a083630
  13. PNAS v.91 Inactivation of gene expression in plants as a consequence of specific sequence duplication Flavell RB https://doi.org/10.1073/pnas.91.9.3490
  14. Agron Trop v.36 Diploides naturels et autotetraploides induits chez Brachiaria ruziziensis Germain et Evrard: criteres d’identification Gobbe J;Swenne A;Louant B-P
  15. Cell v.30 Transcription of cauliflower mosaic virus DNA: Detection of promoter sequences, and characterization of transcription Guilley H;Dudley RK;Jonard G;Balazs E;Richards KE https://doi.org/10.1016/0092-8674(82)90281-1
  16. Crop Sci v.27 Apomixis: Its identification and use in plant breeding Hanna WW;Bashaw EC https://doi.org/10.2135/cropsci1987.0011183X002700060010x
  17. EMBO J v.6 GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants Jefferson RA;Kavannagh TA;Bevan MW
  18. Mol Breeding v.4 Analysis of mannose selection used for transformation of sugar beet Joersbo M;Donaldson I;Kreiberg J;Petersen SG;Bruntedt J;Okkels FT https://doi.org/10.1023/A:1009633809610
  19. Brachiaria: Biology, agronomy and improvement Natural variation in Brachiaria and existing germplasm collections Keller-Grein G;Maass BL;Hanson J;Miles JW(ed.);Maass BL(ed.);Valle, CB do(ed.)
  20. Bio/Technol v.6 Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles Klein TM;Gradziel T;Fromm M;Sanford JC https://doi.org/10.1038/nbt0588-559
  21. J Plant Biotechnol v.2 Expression of gus and gfp genes in Garlic (Alliumsativum L.) cells following particle bombardment transformation Lacorte C;Barros D
  22. Master Thesis. UnB Brasilia-Brazil Desenvolvimento de um metodo de transformacao genetica de Brachiaria spp. por bombardeamento de particulas Lenis-Manzano S
  23. PI9903700-9. CIAT-Colombia Processo de regeneracao de plantas e transformacao genetica de especies de Brachiaria Lentini Z;Carneiro VTC;Manzano SJL;Galindo L
  24. Euphytica v.78 Male and female sporogenesis and gametogenesis in apomitic Brachiaria brizantha, Brachiaria decumbens and F1 hybrids with sexual colchicineinduced tetraploid Brachiaria ruziziensis Lutts S;Ndikumana J;Louant BP
  25. TIG v.11 Homology-dependent gene silencing in transgenic plants: what does really tell us? Matzke MA;Matzke AJM https://doi.org/10.1016/S0168-9525(00)88973-8
  26. Biotechnol v.6 Stable transformation of soybean (Glycine max) by particle bombardment McCabe DE;Swain WF;Martinell BJ;Christou P https://doi.org/10.1038/nbt0888-923
  27. Plant Cell v.2 Isolation of an efficient actin promoter for use in rice transformation McElroy D;Zhang W;Cao J;Wu R https://doi.org/10.1105/tpc.2.2.163
  28. Brachiaria: Biology, Agronomy, and Improvement no.259 Miles JW;Maass BS;do Valle CB;JW Miles(ed.);BL Maass(ed.);CB. do Valle(ed.);V. Kumble(with the collaboration)
  29. Physiol Plant v.15 A revised medium for rapid growth and bioassays with tobacco tissue cultures Murashige T;Skoog F https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  30. Sex Plant Reprod v.12 Apomixis and sexuality in diploid and tetraploid accessions of Brachiaria decumbens Naumova TN;Hayward MD;Wagenvoort M https://doi.org/10.1007/s004970050170
  31. Plant Cell Rep v.19 The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation Negrotto D;Jolley M;Beer S;Wenck AR;Hansen G https://doi.org/10.1007/s002999900187
  32. Pol Bot Stud v.8 Genetics of gametophytic apomixis - a historical sketch Nogler GA
  33. Plant Cell Rep v.19 Duplication of the chromosome number of diploid Brachiaria brizantha plants using colchicine Pinheiro AA;Pozzobon MT;Valle CB;Penteado MIO;Carneiro VTC https://doi.org/10.1007/s002990050011
  34. Plant Mol Biol v.23 Effects of promoter, intron and enhancer elements on transient gene expression in sugarcane and carrot protoplasts Rathus C;Bower R;Birch RG https://doi.org/10.1007/BF00019308
  35. Technique v.3 An improved helium driven biolistic device Sanford JC;Devit MJ;Russel JA;Smith FD;Harpending PR;Roy MK;Johnston AS
  36. Meth Enz v.217 Optimizing the biolistic process for different biological applications Sanford JC;Smith FD;Russel JA https://doi.org/10.1016/0076-6879(93)17086-K
  37. Transgenic Research v.3 Quantitative transient gene expression: Comparison of promoters for maize poliubiquitin1, rice actin 1, maize derives Meu and CaMV 35S in cells of barley, maize and tobacco Schlededzewski K;Mendel RR
  38. Plant Cell Rep v.12 Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25 Taylor MG;Vasil V;Vasil IK
  39. Brachiaria: Biology, agronomy and improvement Applications of biotechnology to Brachiaria Tohme J;Palacios N;Lenis S;Roca W;Miles JW(ed.);Maass BL(ed.);Valle CB do(ed.)
  40. Apomixis Newsl v.5 Breeding of apomictic species Valle CB do;Miles JW
  41. Brachiaria: Biology, agronomy and improvement Genetics, cytogenetics and reproductive biology of Brachiaria Valle CB do;Savidan Y;Miles JW(ed.);Maass BL(ed.);Valle CB do(ed.)
  42. Biotechnol v.6 Progress in the regeneration and genetic manipulation of Cereal Crops Vasil IK
  43. Plant Mol Biol v.31 Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter Verdarguer B;Kochko A;Beachy RN;Fauquet C https://doi.org/10.1007/BF00040830
  44. Plant Mol Biol v.28 Activity of constitutive promoters in various species from the Liliaceae Wilmink A;van de Vem;BCE Dons JJ https://doi.org/10.1007/BF00042079
  45. Plant J v.10 Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues Yong-Qiang A;Mc Dowell JM;Huang S;Mc Kinney EC;Chambliss S;Meagher RB https://doi.org/10.1046/j.1365-313X.1996.10010107.x