DOI QR코드

DOI QR Code

ROTATIONALLY INVARIANT COMPLEX MANIFOLDS

  • Isaev, A.V. (Department of Mathematics The Australian National University)
  • Published : 2003.05.06

Abstract

In this paper we discuss complex manifolds of dimension $n{\ge}2$ that admit effective actions of either $U_n$\;or\;$SU_n$ by biholomorphic transformations.

Keywords

References

  1. D. Barrett, E. Bedford and J. Dadok, $\mathbb{T}^n-actions $ on holomorphically separable complex manifolds, Math. Z. 202 (1989), 65–82. https://doi.org/10.1007/BF01180684
  2. J. Bland, T. Duchamp and M. Kalka, A characterization of $\mathbb{CP}^n$ by its automor-phism group, Complex Analysis (University Park, Pa, 1986), 60–65, Lecture Notes In Mathematics 1268, Springer-Verlag, 1987. https://doi.org/10.1007/BFb0097296
  3. J. A. Gifford, A. V. Isaev and S. G. Krantz, On the dimensions of the auto-morphism groups of hyperbolic Reinhardt domains, Illinois J. Math. 44 (2000), 602–618.
  4. R. E. Greene and S. G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J. 34 (1985), 865–879. https://doi.org/10.1512/iumj.1985.34.34048
  5. W. C. Hsiang and W. Y. Hsiang, Some results on differentiable actions, Bull. Amer. Math. Soc. 72 (1966), 134–138. https://doi.org/10.1090/S0002-9904-1966-11453-2
  6. W. Y. Hsiang, On the principal orbit type and P. A. Smith theory of SU(p) actions, Topology 6 (1967), 125–135. https://doi.org/10.1016/0040-9383(67)90019-5
  7. A. V. Isaev and S. G. Krantz, On the automorphism groups of hyperbolic manifolds, J. Reine Angew. Math. 534 (2001), 187-194. https://doi.org/10.1515/crll.2001.041,25/04/2001
  8. A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, to appear in Canad. J. Math. in 2002
  9. W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43-70. https://doi.org/10.1007/BF01425490
  10. A. Kruger, Homogeneous Cauchy-Riemann structures, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1991), no. 4, 193-212.
  11. A. Klimyk and K. Schmudgen, Quantum groups and their representations, Texts and Monographs in Physics, Springer, Berlin, 1997.
  12. K. Mukoyama, Smooth SU(p, q)-actions on (2p+2q−1)-sphere and on the com-plex projective (p + q − 1)-space, Kyushu J. Math. 55 (2001), 213–236. https://doi.org/10.2206/kyushujm.55.213
  13. T. Nagano, Transformation groups with (n - 1)-dimensional orbits on non-compact manifolds, Nagoya Math. J. 14 (1959), 25-38. https://doi.org/10.1017/S0027763000005730
  14. H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Analysis, Minneapolis, 1964, Springer-Verlag,1965, 242-256.
  15. H. Rossi, Homogeneous strongly pseudoconvex hypersurfaces, Proc. Conf. Complex Analysis Rice Univ., Houston, 1972, Rice Univ. Studies, 59 (1973), no. 1, 131-145.
  16. F. Uchida, Smooth actions of special unitary groups on cohomology complex projective spaces, Osaka J. Math. 12 (1975), 375-400.
  17. E. Vinberg and A. Onishchik, Lie Groups and Algebraic Groups, Springer-Verlag, 1990.