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PROPER HOLOMORPHIC MAPPINGS, POSITIVITY
CONDITIONS, AND ISOMETRIC IMBEDDING

Joun P. D’ANGELO

ABSTRACT. This article discusses in detail how the study of proper
holomorphic rational mappings between balls in different dimen-
sions relates to positivity conditions and to isometric imbedding
of holomorphic bundles. The first chapter discusses rational proper
mappings between balls; the second chapter discusses seven distinct
positivity conditions for real-valued polynomials in several complex
variables; the third chapter reveals how these issues relate to an iso-
metric imbedding theorem for holomorphic vector bundles proved
by the author and Catlin.

0. Introduction

The titles of the three lectures were “Proper holomorphic mappings”,
“Positivity conditions”, and “An isometric imbedding theorem for holo-
morphic bundles”. The lectures were intended to be accessible.to grad-
uate students. The first lecture posed some basic questions about the
existence of proper holomorphic polynomial or rational mappings be-
tween balls in different dimensional complex Euclidean spaces with cer-
tain specified properties. The second lecture showed how to answer these
questions, using some ideas that revolve around positivity conditions for
real-valued polynomial functions on complex Euclidean space. The third
lecture discussed joint work with David Catlin, where these ideas were
generalized and applied in the setting of holomorphic vector bundles.
The author wishes to acknowledge Catlin’s important contributions to
the mathematics in these lectures.
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The organization of this paper parallels that of the lectures, but some-
what more information appears here than was in the lectures. Since the
lectures were given, the author has written a Carus monograph [10] that
includes an elementary treatment of much of the material preliminary
to these lectures. The book [10] also includes small improvements on
some of the results here.

1. Proper holomorphic mappings

1.1. Elementary considerations

A continuous map f : X — Y between topological spaces is called
proper when K compact in Y implies f~*(K) compact in X. For us X
and Y will be bounded domains in complex Euclidean spaces, perhaps
of different dimensions. We have a simple characterization of proper
holomorphic mappings in this case.

PROPOSITION 1. Let 2 C C™ and £ C CV be bounded domains. A
holomorphic mapping f : Q0 — Q' is proper if and only if the following
condition holds. If {z,} is a sequence of points in ) tending to its

boundary, then the image sequence {f(z,)} tends to the boundary of
.

Proof. Tt is easy to prove the contrapositive of each required state-
ment. If the condition fails, then there is some sequence {z,} tending
to the boundary whose image does not. Hence there is a subsequence
whose image stays within a compact set in the target €. Then the in-
verse image of this compact set is not compact in §2, and f is not proper.
On the other hand, if f is not proper, we can find a compact K whose
inverse image is not compact. Then there is a sequence {z,} in f~(K)
that tends to the boundary, while its image stays within K. Thus the
condition about sequences fails. Hence this condition is equivalent to f
being proper. ‘ ‘ I

Suppose in the situation of Proposition 1 that the boundaries b2 and
b§Y are smooth manifolds, and that f is known to have a continuous
extension F to b§). It follows that F'(b2) C b and hence its restriction
to b2 defines a CR mapping between CR manifolds. This is one of the
main reasons why proper holomorphic mappings are interesting to us.
For completeness we review some simple facts about CR geometry; the
main thing we will need is the definition of strong pseudoconvexity.
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Suppose first that M is a real hypersurface in C™; we let TM ® C
denote its complexified tangent bundle. Let T'°M be the subbundle of
T M @ C whose local sections are combinations of the aizj forj=1,..,n,

and let TO'M = TOM be the complex conjugate bundle. Note that
these bundles are integrable in the sense that the Lie bracket of local
sections of T0M is also a local section of T°M. Note that T°M N
TO'M = 0. Also the direct sum T''M @T%' M is a subbundle of TM ®C
whose fibers are of codimension one.

Suppose more generally that M is a smooth real manifold of odd
dimension. We denote its complexified tangent bundle by TM @ C.

DEeFINITION 1. The odd-dimensional real manifold M is called a CR
manifold of hypersurface type if there is a subbundle T'°M of TM ® C
satisfying the following properties:

1.L.1) TPM NTOM = 0.

1.1.2) T*M is integrable (closed under the Lie bracket operation).

1.1.3) The fibres of T*°M ® T19M have codimension one in TM ® C.

The most crucial features of the geometry of a CR manifold M of
hypersurface type are determined by its Levi form. We recall its defini-
tion. First let 7 denote a purely imaginary nonvanishing one-form that
annihilates T'°M & T M.

We define the Levi form ) to be the Hermitian form on T'°M given
by

(1) /\(L7f) = (na [L’_D = <d77»L /\7>

The Levi form is determined only up to sign. In case M is a compact
real hypersurface we always choose the sign so that this form is positive
definite at the point on M farthest from the origin. A real hypersur-
face or more generally a CR manifold of hypersurface type is strongly
pseudoconvex if its Levi form is definite. We call a domain in a complex
manifold strongly pseudoconvez if its boundary is smooth and strongly
pseudoconvex. For us the most important CR manifold will be the unit
sphere in C".

1.2. Proper holomorphic mappings between balls

Next we discuss proper holomorphic mappings between balls in per-
haps different dimensional complex Euclidean spaces. We write (2, w) =
-1 2jW; to denote the usual Hermitian inner product between vectors

z and w in C", and we write ||z||? for the corresponding squared norm.
We let B, denote the unit ball in C™. so B, = {z: ||z||* < 1}.
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The first observation is that there are no proper holomorphic map-
pings from B, to By when n exceeds N. The reason is simple; consider
for example the nonempty subset f~!(f(0)) of B,. As the inverse im-
age of a compact set it must be compact. As the solution set of N
holomorphic equations in n variables it must be a complex analytic va-
riety of dimension at least n — N. It is a standard elementary fact in
complex analysis that there are no positive-dimensional compact com-
plex analytic subvarieties of the unit ball. Hence, if there is a proper
holomorphic mapping from B, to By, then n — N < 0.

We next discuss the equidimensional case; here the result in the case
n = 1 differs fundamentally from the case n > 2. It turns out that
the one-dimensional case motivates many of the questions (in higher
dimensions) we answer in this paper.

PROPOSITION 2. The proper holomorphic mappings from By to itself
are precisely the finite Blaschke products. Thus, if f : By — By is
proper, then there is a point € on the circle, finitely many points a; in
the disk, and positive integer multiplicities m; such that

(2) f2) = [ (E=2ym.

1—a;z

Proof. (Sketch) Given a proper holomorphic mapping f, consider the
divisor

(3) F7H0) =D mylayl,

where the sum is finite. Let B(z) denote the Blaschke product with the
same divisor as f.

(4) B(z) = [](-2=2ym,

1-a;z

Then the function % is holomorphic and nonzero in the unit disk. Using
an epsilon-delta formulation of Proposition 1, we obtain the following
inequalities. Given € > 0, we can find § > 0 so that
1

1—¢

for |z] > 1 — 4. It then follows from the maximum principle that both
inequalities in (5) hold on the unit disk. Since € is arbitrary, ]%(z)| =1
on the unit disk. Since % is holomorphic, it must be constant, and hence
equal to e? for some 6. 0

) LI
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We make two simple observations, which we can extend to more vari-
ables only by allowing arbitrarily large dimensions for the target.

1.2.1) Consider an arbitrary divisor ij\il mjla;|, where |a;| < 1 for
each j and m; are positive integers. Then there is a proper holomor-
phic mapping from Bj to itself whose zero set is precisely this divisor.
Furthermore f is determined up to a unitary transformation of C. The
function |f|? is completely determined by the divisor f~1(0).

1.2.2) Let g be an arbitrary polynomial that does not vanish on the
closed unit disk. Then there is a polynomial p such that p and g are
relatively prime, and % is a proper holomorphic mapping from B to
itself. We give the simple proof. If ¢ is a constant ¢, then we can take
p(z) = cz. If q has degree d, with d > 1, we put p(z) = 293 = (1/z).
Note then on the circle where Z =1/z,

P = 2 00/2), _a/2), _a(2)
(6) PO B e e el e R

This calculation amounts to replacing the factor 1 — @;z in ¢ with the
factor z —a; in p.

|=1.

The equidimensional case in higher dimensions is totally different.

THEOREM. (Alexander, Pinchuk) For n > 2, the proper holomorphic
mappings from B,, to itself are precisely the automorphisms of B,,. Thus
if f : B, — By, is proper, then
a— Lgz

7 2) =U—7—,

7 1) = U=
where U is a unitary transformation, and ||a|| < 1, and L, is a linear
transformation. In fact L,z = c1z + c2(z,a)a, for appropriate positive
numbers c¢; and ¢y depending on ||al|.

Proof. (Sketch) One first proves that the proper mapping extends
smoothly to the boundary. Next one considers the branch locus, which
is the complex analytic variety V defined by V = {z : det(df)(z) = 0}.
Suppose that V is nonempty; As a complex analytic variety of positive
dimension in the ball it must be noncompact. By this and the extension
of f to the boundary, the branch locus then includes points on the
boundary. A calculation (or the Hopf lemma) shows that ||f(2)||? must
have nonvanishing differential on the sphere. Thus the function ||f]|2—1
is a defining equation for the sphere, which is strongly pseudoconvex,
and hence its Levi form must be positive definite. But the Levi form has
|det(df)|? as a factor, so we conclude that V must be empty. Thus f is
an unbranched covering map of a simply connected domain, and hence
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must be injective. See [19] for more details, and more information on
the automorphism group of the ball. O

We make the following observations to contrast with the one-dimen-
sional case.

1.2.1°) The only possible divisor is [a]. In other words, f is determined
up to a unitary transformation by f~!(0). Thus f~%(0) = [a]. Unlike
the one-dimensional case, the divisor must be a single point a with
multiplicity unity.

1.2.2’) If ¢ is a polynomial that does not vanish on the closed unit
ball, then q does not arise as a denominator of a proper rational mapping
reduced to lowest terms unless ¢ is first degree!

The contrast between the results and the one-dimensional case moti-
vated the author to study proper holomorphic mappings f : B, — By
for all N > n at the same time. The main idea is this: we can find a
proper rational mapping between balls with any reasonable properties,
as long as we are allowed to choose the target dimension N sufficiently
large. In particular we will find that, the analogue of 1.2.1) holds, and
one can do much more! The analogue of 1.2.2) also holds. Given a
polynomial ¢ : C" — C that does not vanish on the closed unit ball,
there always exists an N and a polynomial mapping p : C* — C¥ such
that s is reduced to lowest terms and maps B, properly to By. We
want £ to be in lowest terms, or else we have the trivial example where
p(z) = q(2)(21, ..., zn). The surprising thing is that, even when n = 2
and the degree of ¢ is two, the minimal possible N can be arbitrarily
large.

In order to prove this and related results, we need the following theo-
rem proved by Catlin and the author. Later in this paper we will prove
this theorem also.

THEOREM 1. Suppose that z — r(z,Z) is a real-valued polynomial on
C", and suppose that (z,Z) > 0 for ||z|| = 1. Then there is an integer
N and a holomorphic polynomial mapping h : C* — C» such that

N
(8) r(2,7) = |[R(2)|? = Y |h;(2)
j=1

for ||z]|| = 1.

For now we assume Theorem 1, and derive some applications to
proper holomorphic mappings. See Section 2.3 for the proof of The-
orem 1.
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THEOREM 2. Let ¢ : C® — C be a holomorphic polynomial, and
suppose that q does not vanish on the closed unit ball. Then there is an
integer N and a holomorphic polynomial mapping p : C* — CN such
that

1.

2.

is a rational proper mapping between By, and By,
is reduced to lowest terms.

Qe 3

Proof. The result is trivial when g is a constant. We have already
given the easy proof when n = 1. So we assume that n > 2, that g
is not a constant, and that g(z) # 0 on the closed ball. Let g be an
arbitrary nonconstant polynomial such that ¢ and g have no common
factor. Then there is a constant ¢ so that

9) la(2) = leg(2)[* > 0

for ||z||> = 1. We set p1 = cg.

By Theorem 1 a polynomial f(z,%) that is positive on the unit sphere
agrees with a squared norm of a holomorphic polynomial mapping on
the sphere. Therefore there is an integer N and polynomials ps, ..., pNy
such that

N
(10) la(2)]* = ()P =) Ips(2)I”
=2

on the sphere. It follows that ||§||2 = 1 on the sphere. Since ||§||2 is
plurisubharmonic and nonconstant, the maximum principle guarantees
that % is a proper mapping from B,, to By. Since % is reduced to lowest
terms, so is §~ O

Theorem 1 can be used also to show that one can choose various
components f of a proper holomorphic rational mapping arbitrarily,
assuming only that they satisfy the necessary condition ||f(z)|]* < 1
on the sphere.

THEOREM 3. Suppose that g is a (vector-valued) rational mapping
on C™ and that ||§(z)||2 < 1 on the unit sphere. Then there is an integer
K and a polynomial mapping g : C* — CK such that p—?ﬁ is a proper
holomorphic mapping between balls.

Proof. Note that |g|2 —||p(2)||? is a polynomial that is positive on the

sphere. By Theorem 1 we can find a holomorphic polynomial mapping
g such that

(11) la(2)1? = [lp()II* = llg()II*



348 John P. D’Angelo

on the sphere, and we may assume that g is not a constant multiple of
g. Then § ® % is a non-constant holomorphic rational mapping whose

2 2
squared norm M'—:Q”—gm equals unity on the sphere. By the maximum
principle it is the required proper mapping. O

COROLLARY 1. Suppose that p is a vector-valued polynomial map-
ping on C™ and that ||p||> < 1 on the unit sphere. Then there is a
polynomial mapping g such that p & g defines a proper holomorphic
mapping between balls.

Theorems 2 and 3 allow us to create rational proper mappings be-
tween balls with the desired properties. Since the proofs rely on Theorem
1, we have no control on the minimum possible target dimension. It is
easy to show directly that the conclusions of the theorems are not pos-
sible if we fix the target dimension a priori. In Corollary 1, for example,
suppose that we are given p(z) = cz1z2. The hypotheses of the corollary
are met when |c|? < 4. We want to find polynomials g1, ..., g5 such that
1 = |p|? +||g]|? on the sphere. It is easy to see that the minimal possible
N tends to infinity as |c|? tends to 4.

Theorems due to Lempert ([14], [15]) and to Lpw [16] are related
to Theorem 1, but they cannot be used here. These results state that
positive functions on the boundaries of strongly pseudoconvex domains
agree with squared norms of holomorphic mappings there. In Lem-
pert’s work, the boundary is real-analytic, the given positive function is
real-analytic, and the resulting holomorphic mapping takes values in an
infinite-dimensional space. In Lgw’s work, the domain has C? boundary,
the given positive function is continuous, and the resulting holomorphic
mapping takes values in a finite-dimensional space. One can conclude
only that it is holomorphic on the interior of the domain. We need
the additional information that the resulting holomorphic mapping is
polynomial.

We close this section by mentioning several important results about
proper mappings between balls. First of all, many authors have con-
tributed to the study of proper mappings between balls that do not
extend smoothly to the boundary. It is now known, whenever n > 1
and N > n, that there are proper holomorphic mappings f : B, — By
that are continuous on the boundary, but that are not continuously dif-
ferentiable. On the other hand, Forstneric [13] proved that, if n > 2,
and f has N — n + 1 continuous derivatives at the boundary, then a
proper mapping f : B, — By must be rational. Cima-Suffridge [6]
showed that such rational maps have no poles on the sphere, and hence
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are holomorphic in a neighborhood of the closed ball. In these lectures
we are interested in only rational proper holomorphic mappings between
balls.

1.3. Constructing proper maps via tensor products and un-
doing

We continue to use the result about finite Blaschke products to moti-
vate our work. Suppose that f and g are proper mappings of a domain
in the plane to the unit disk. Then their product fg also is. The exten-
sion of this idea to more variables requires tensor products, and is more
interesting. The simplest generalization, which we make first, turns out
to be inadequate. If f and g are proper mappings of a domain 2 in C™ to
unit balls in dimensions N and K, then the tensor product f ® g defines
a proper holomorphic mapping from 2 to Byg. Here of course f ® g
denotes the mapping whose components are all possible products f;gx
of the components of f and g, in some fixed but irrelevant order. Note
that ||f ® g||* = ||£]1%|/g]|?, and hence this statement about properness
to Byk follows from Proposition 1.

We pause to make a simple remark. In many of our considerations the
appropriate object to consider is ||A]|? rather than A itself. For example,
given f and ¢ as above, the tensor product f ® g is determined by f and
g only up to linear transformations, whereas its squared norm ||f ® g||?
is determined completely by them. It is useful to note [7] that if f and g
are CN-valued holomorphic mappings, and ||f||*> = ||g|?, then there is
a unitary transformation U such that f = Ug. We will generally treat
f and g as the same when || f]|? = ||g||*.

From the tensor product we immediately recover one piece of the
finite Blaschke product result in one variable. Let ¢, denote the auto-
morphism of B, defined by

a—Lyz
12 - e
( ) ¢a(z) 1 - <Z, a>
Recall that L, was defined in the Alexander-Pinchuk theorem. Given a
finite set of points a; in By, and positive integer multiplicities m;, let
d =3 m;. We can form a proper holomorphic mapping f : B, — Bn
with f71(0) = 3 m;[a;] and N = n? by

(13) F=1le¢a"
®
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Mappings defined by (13) are direct analogues of finite Blaschke prod-
ucts; there are many polynomial and rational proper holomorphic map-
pings between balls that cannot be expressed in this fashion. We need
to generalize the tensor product operation and discuss the “undoing” of
this operation.

Suppose that A is a subspace of C¥. We write AL for its orthogonal
complement, so we have C¥ = A@® AL. When f takes values in CV we
can write f = fa ® f4o.

We next extend the notion of the tensor product by allowing tensoring
on A.

Let © be a domain in C". Suppose that f : 2 — CN andg: Q — C¥
are holomorphic mappings. Let A be a subspace of CV of dimension d.
We define a holomorphic map E(A,g)f from Q to CF by

(14) E(Ag)f=(fa®g)® fye.

When A =0, so d = 0, we see that E(A4,g)f = f. When A = C¥, so
d = N, we see that E(A, 9)f = f ® g. By identifying A ® CX with C%¥
we think of E(A, g)f as taking values in C”, where L = (N — d) + dK.
The point of this operation is the following simple fact.

PROPOSITION 3. Suppose that ) is a domain in C™", and that [ :
Q — By and g : Q@ — CX are proper holomorphic mappings. Then
E(A,g9)f: Q — By is a proper holomorphic mapping.

Proof. Observe that
IE(A, ) fII* = Ifar |+ lIfa @ gl
= [|£ac P+ 11 £alPllgl® = (11 + 11 £al (gl = 1).

It follows from (15) that when |[|g]|? and ||f]|? tend to unity, so does
|E(A, g)f]|2, so the result follows from Proposition 1. O

(15)

This operation generates a new proper map from two given proper
maps; we next introduce the undoing of this operation.

Suppose h is a holomorphic function taking values in CL. Suppose
further that there are holomorphic mappings f and g and a subspace A of
the target of f such that h = E(A, g)f. We then write f = E(4,g) 'h.
In general of course this undoing operation is not defined. We next
give a simple example of a polynomial mapping that is not an iterated
composition of tensor products; undoing is required for a composition
product factorization.
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ExAMPLE 1. Consider the map (first found by Faran) f : C* — C?
defined by

(16) f(Z1,22) = (zf’,\/gzlzg,zg).

Then f : By — Bj is a proper holomorphic mapping. We may express
it via the following composition product factorization:
1.3.1) We begin with the identity.

fH(z) ==
1.3.2) We tensor with the identity map (on the full space) to obtain
folz) =2®@z= fi(2) ® z = (22, 2129, 2221, 22).

1.3.3) We tensor (on the full space) again with the identity map,
obtaining a mapping to 8-dimensional space.
%2’) =:Q2Qz= fo(2) Q2= (23,222, 222, 222, 1125, 2125, 2123, 23).

1.3.4) We compose (17) with a linear isometry and see that the image
of the mapping fits into 4 dimensions. Projecting into 4 dimensions gives
(18) fa(2) = Lfs(2) = (23, V32329, V32123, 23).

1.3.5) We “undo” the middle two components of (18) to obtain

f5(2) = B(A, 1) fa(2) = (2, V32122, 23)

Observe that the components of the mapping fs in the above are
precisely the homogeneous monomials of degree 3, multiplied by certain
coefficients. It is natural to next make the following definition.

DEFINITION 2. Given positive integers n and m, we define a map
Hy, :C*— CV by

(19) Hm(z) = (-, (m)za’,..),
!
Since ||Hp(2)|? = |2]|*™, we see immediately that H,, defines a

proper holomorphic mapping from B, to By, where N is the number
of linearly independent monomials of degree m in n variables. We also
see that ||Hn(2)|? =|z® 2z ® 2|

Using this notation we see that the map f from Example 1 can be
written f = E(A,I)"'Hs. This gives insight into the following general
result.
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THEOREM 4. Suppose that f : C* — C¥ is a polynomial of degree
m that defines a proper mapping from B, to By. We may then write

m
(20) F=T] E4;, ) H.
§=0

In other words, every proper polynomial mapping between balls of
degree m is obtained by first taking the m-fold tensor product of the
identity with itself and then undoing the tensor product operation on
various subspaces.

The proof appears in [7], and is based upon the following simple
observation. Suppose that we write a (vector-valued) polynomial f as
f=fo+ fi+ -+ fm where each f; is homogeneous of degree j. If f
is a proper mapping between balls, then necessarily fo is orthogonal to
fm. More generally, the lowest order non-vanishing part is orthogonal
to the highest order non-vanishing part. This determines a subspace A
of the target. After tensoring on A, we obtain a new proper mapping of
the same degree as f whose lowest order part is of higher degree. Thus,
given f, there are subspaces on which to tensor so that, after at most
m steps, we obtain a homogeneous mapping of degree m. Up to linear
transformations, the only homogeneous proper mapping of degree m is
H,,. See [7] for simple proofs of this.

1.4. Proper mappings and invariance under finite groups

It is also interesting to construct proper holomorphic mappings that
are invariant under finite subgroups of the unitary group. It turns out
to be impossible to find rational proper mappings invariant under most
such groups. D’Angelo-Lichtblau [11] solved the CR Spherical Space
Form problem by proving Theorem 5 below. This has an interesting
relationship to squared norms of holomorphic mappings.

Suppose that G is a finite group, and that I' = 7(G) is a representa-
tion of G as a subgroup of the unitary group U(n). We call I' a finite
unitary group, and we say that it is fixed point free if the only element in
I' with an eigenvalue of unity is the identity. We say that a holomorphic
mapping f is [-invariant if foy = f for all y € I.

THEOREM 5. [11] Suppose that I is a fixed-point free unitary rep-
resentation of a finite group. Suppose that f = £ is a (holomorphic)
rational function invariant under T, and furthermore suppose that there
is an integer N such that f : §2*~1 — S?N=1_In order that f be non-
constant, I' must be cyclic, and represented in one of the following three
ways.
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1.4.1) T is the cyclic group of order m generated by eI. Here € is a
primitive m-th root of unity, and I is the identity matrix.

1.4.2) T is the cyclic group of order 2r + 1 generated by eI ® €2I,,_y.
Here € is a primitive (2r + 1) -st root of unity, and I}, denotes the k-th
order identity matrix.

1.4.3) T is the cyclic group of order seven generated by eI}, &> @ I ;D
e4Ian_j. Here ¢ is a primitive seventh root of unity.

There are explicit formulas for the minimal monomial example in
each of these cases, see Example 2 below. Both the proof of Theorem
5 and the formulas for the maps that do arise use properties of the I'-
invariant real-valued polynomial ® defined below in (21). There are also
interesting combinatorial aspects. In the first case the multinomial coef-
ficients arise as squared absolute values of coefficients of the monomials;
in the second case a new triangle of integers arises in this way. See (8]
and Chapter 5 in [7] for combinatorial aspects of invariant holomorphic
mappings.

COROLLARY 2. Let T" be a fixed-point free unitary representation of
a finite group. Define its invariant polynomial ® by

(21) Or(z,z) =1 - [[(1 - (vz,2)).

vyer

Then @ is a squared norm of a holomorphic mapping only when I is one
of the three cases from Theorem 6. In each case the holomorphic map-
ping is a proper polynomial mapping between balls that is I'-invariant.

EXAMPLE 2. We compute (21) in several cases.
1.4.1) Suppose that I is the cyclic group generated by eI, where € is
a primitive m-th root of unity. Expanding (21) yields

(22) or(z,2) = [|2|"" = || Hn(2)|*

1.4.2) Suppose that I' is as in 1.4.2. Whenn = 2 and r = 1, expanding
(21) gives |21]% + 3|21/%|22]* 4 |22/%, which is the squared norm of the
Faran mapping from Example 1. We obtain from (21) similar examples
of proper polynomial mappings of degree 2r+1 from Bs to B, for each
positive integer r. For example, when r = 4 we obtain for the squared
norm
(23)
|21+ 9lz1 M 22| + 27|21 "0 z2|* + 30 = |21[%|22|° + 9121 P z2f® + |22,

1.4.3) Expanding (21) when n = 3 yields (the squared norm of) a
polynomial mapping of degree 7 from Bj to By7; see [7] for the formula.
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In [8] the author expands (21) in cases where a squared norm does not
result, thereby obtaining group invariant proper mappings to domains
whose boundaries are quadrics.

We close this section with a conjecture for which the author has found
both heuristic justification and computer evidence, but has not found a
proof. Note first that, for each N with NV > 2, the polynomial proper
mappings in 1.4.2 are of degree 2N —3. We conjecture that this is sharp.

Conjecture. Suppose that f : Bs — By is a proper holomorphic
rational mapping. Then the degree of f does not exceed 2N — 3.

2. Positivity conditions

2.1. Seven positivity conditions

In this section we introduce various positivity conditions for real-
analytic real-valued functions of several complex variables. Suppose that
r: C" x C" — C is a holomorphic function such that, for all z, r(z,%)
is real. We will be concerned with both r(z,%) and with r(z,w), so we
use the phrase on the diagonal when we are thinking of the real-analytic
function z — r(z,%).

We put the usual complex Fuclidean norms on all finite-dimensional
complex vector spaces. Thus when & is a holomorphic function taking
values in CV, we write

N

Bl = 7Rk,

k=1

where h* is the k-th component function. We use the same notation for
the norm when h takes values in a Hilbert space, and we use (, ) for the
inner product.

We now introduce the seven positivity conditions. In all cases we
assume that r is not identically zero.

2.1.1) On the diagonal r is nonnegative as a function. For all z,

r(z,Z) > 0.
2.1.2) On the diagonal r is the quotient of squared norms of holo-

morphic mappings. Thus there is a Hilbert space H and holomorphic
mappings f and g from C" to H such that

£ (21>

r(z,7) = 2L

g ()|
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2.1.3) On the diagonal r is the squared norm of a holomorphic map-
ping. Thus there is a Hilbert space H and a holomorphic mapping
f: C™ — 'H such that

r(z2) = [|f(2)lI*.

2.1.4) The underlying matrix C' of Taylor coefficients of r is of the

form A*A. Thus there is a Hilbert space H and elements f, € H such

that
r(z,2) = Z Cap2®?®

and the entries c4p of the (necessarily) Hermitian matrix C satisfy

CaB = <faa fﬁ)

2.1.5) r is positive at a single point, and there is a positive integer
N such that, on the diagonal, 7V is a squared norm of a holomorphic
mapping. Thus there is a Hilbert space H and a holomorphic mapping
f: C™ — H such that

r(z, 2N = [If()I*

2.1.6) r is positive at a single point, and satisfies the global Cauchy-
Schwarz inequality. For all z and w,
r(z,Z)r(w, @) > |r(z, @)
2.1.7) On the diagonal, 7 is plurisubharmonic. For all z,a € C", we

have
n

3"z, (2, 2)aid; = 80r(z,7)(a,3) 2 0.
3,j=1

We first mention all the obvious implications.
2.1.3) implies 2.1.2) and 2.1.2) implies 2.1.1).
2.1.3) implies 2.1.5)
The following implications are easy to show; see [9] for proofs.
2.1.5) implies 2.1.6) and 2.1.6) implies 2.1.7).
2.1.5) implies 2.1.1).
2.1.3) holds if and only if 2.1.4).

We continue with a beautiful example from [9] showing that most of
the other implications fail even for bihomogeneous polynomials.

ExXAMPLE 3. For a real number a, define r, by

n
(24) ra(z,2) = l2|1*N = a ] ] lz1*
j=1
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We consider values of a for which the seven positivity conditions hold.
For simplicity we assume that n = 2.

2.1.1) holds if and only if a < 186.

2.1.2) holds if and only if a < 16.

2.1.3) holds if and only if a < 6.

2.1.4) holds if and only if a < 6.

2.1.5) holds for a < 7.8, and fails for a > 8.

2.1.6) holds for a < 7.8, and fails for a > 8.

2.1.7) holds if and only if a < 12.

First we discuss 2.1.1) and 2.1.2). It is easy to see that 2.1.1) holds,
and that r, is positive away from the origin when a < 16. It then follows

from Theorem 6 (a nontrivial result) that there is an integer d and a

holomorphic polynomial mapping h such that r,(z,z) = ”l’lliﬁélf. Since

|2]|2¢ = ||Ha(2)||?, we see that 2.1.2) holds if a < 16. To see that it fails
when a = 16, we use the jet pullback property from [5].

Suppose that 2.1.2) holds, so that r(z,z) = %—};. Let t — z(t) be
a holomorphic curve in C™. Then the pullback z*r is far from arbitrary.
In fact we have, where - -- denotes terms of higher degree,

e 7y o WGP _ Hlat™ 4112 _ s

B D= e T e T

This shows that the lowest order part of the Taylor series for z*r must
be independent of the argument of t. The author named this necessary
condition for being a quotient of squared norms the jet pullback property.

We show that this property fails for r, when a = 16. Let z2(¢) =

(1+¢,1). Then one can compute that
(26) 2r(t, D) =8t + 2P +77) + -

so that the lowest order part does not satisfy the necessary condition.
Thus r, is not a quotient of squared norms when a = 16. One can also
observe this by simply noting that its zero set is not a complex analytic
variety. There are simple examples of polynomials whose zero sets are
complex analytic varieties, but for which the jet pullback property fails.
See page 17 of [5].

Next we discuss 2.1.5) and 2.1.6). As stated above, 2.1.5) implies
2.1.6). By hand one can easily see that 72 is a squared norm if and only
if a < 7. The calculation is facilitated by writing z = |21|? and y = |22?,
and replacing r, by (z + y)* — az®y?. A power of r, will be a squared
norm if and only if all the coefficients of that power of (z+y)*—ax?y? are
nonnegative. By using Mathematica, one can see for example that r32
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is a squared norm when a = 7.8, but not when a = 7.9. The proof that
7o fails to satisfy 2.1.6) for a > 8 appears in [9]. The author suspects
that 2.1.5) holds if and only if a < 8, and that 2.1.6) holds if and only
if a < 8. For this example, it follows from Theorem 6 that 2.1.5) and a
sharp form of 2.1.6) are equivalent.

We refer to [9] for the proofs of the other statements.

2.2. Positivity for bihomogeneous polynomials

Suppose that

(27) p(z,Z) = Z Cap?®z’
la]+|Bl<2m

is a polynomial function on complex Euclidean space C". Observe that
p(2,Z) will be real for all z if and only if the underlying matriz of co-
efficients C' = (cqg) is Hermitian symmetric. It is evident that, if C
is non-negative definite, then the polynomial will take on non-negative
values, and if C positive definite, then the polynomial will be strictly
positive away from the origin. The polynomial p can be considered as
the restriction of the Hermitian form in N variables
N
(28) Z caﬁCaCﬁ

a,f=1

to a Veronese variety given by parametric equations (,(z) = 2.
Positivity conditions for the function are weaker than positivity con-
ditions for the Hermitian form. Example 3 shows that 2.1.1) does not
imply 2.1.4), even for bihomogeneous polynomials.
A real-valued polynomial p on C" is called bihomogeneous of degree
2m if

(29) p(z,Z) = Z caﬂzaiﬂ.

|la|=|B|=m

We write V, for the complex vector space of homogeneous holomorphic
polynomials of degree m, and we can thus identify p with an Hermitian
form on V,, via its underlying matrix of coefficients. In this section we
use the term squared norm for a finite sum of squared absolute values of
holomorphic functions. We have observed that a power of the squared
Euclidean norm is itself a squared norm; ||z[|?? = [|Hg4|[®. Observe also
that the components of Hy form a basis for V.

There is a decisive theorem (see [3, 17]) in the bihomogeneous case:
such a polynomial is positive away from the origin precisely when it is
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a quotient of squared norms of holomorphic polynomial mappings, and
both the numerator and denominator vanish only at the origin. This is
statement 4) below.

THEOREM 6. (Catlin-D’Angelo, Quillen) The bihomogeneous case.
Let f(2,2) = 3.5 capz®z” be a real-valued polynomial that is homo-
geneous of degree m in z and also of degree m in z. The following are
equivalent.

1) f achieves a positive minimum value on the sphere.

2) There is an integer d such that the underlying Hermitian matrix
for ||z||*4f(2,%) is positive definite. Thus

(30) 12174 (2,2) = ) Ep2"z”

where (E,, ) is positive definite.

3) There is an integer d such that the operator R,, 4 defined by
the kernel kq(z,¢) = (2,()¢f(2,¢) is a positive operator from Vintd C
A%(B,) to itself.

4) There is an integer d and a holomorphic homogeneous vector-
valued polynomial g of degree m + d such that V(g) = {0} and such
that ||z||?¢f(2,Z) = ||g(2)||?>. Thus f is a quotient of squared norms.

Theorem 6 says that, for bihomogeneous polynomials, a sharp form of
2.1.1) implies 2.1.2). Even for bihomogeneous polynomials, 2.1.1) does
not imply 2.1.2), as Example 3 shows (when a = 16). It is also worth
noting that the minimum d required in 4) hold may be smaller than the
minimum d required in 2). Also, if for some d the matrix E,, in (30) is
positive definite, then the same holds for all larger d. For that reason
the author called this result a stabilization theorem for Hermitian forms.

The main assertion that 1) and 2) are equivalent was proved in 1967
by Quillen. Unaware of that result, Catlin and the author, motivated
by trying to prove Theorem 1, found a different proof, which we give
in Section 3.4. Both proofs use hard analysis; Quillen uses Gaussian
integrals on all of C™, whereas Catlin and the author use the Bergman
kernel function on the unit ball B,. Quillen uses a priori estimates,
whereas Catlin and the author use facts about compact operators on
L%(By). In [4] they generalized to operators on weakly pseudoconvex
domains some of these facts about compact operators. In the statement
of Proposition 1 of that paper, the word tangential should appear before
pseudodifferential operator, but was incorrectly omitted.
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In [4] they reinterpreted Theorem 6 in terms of holomorphic vector
bundles and generalized the result considerably in [5]. We state these in
Theorems 7 and 8.

2.3. Proof of Theorem 1 from Theorem 6

Assuming that Theorem 6 is known, we prove Theorem 1. We ho-
mogenize to reduce to the bihomogeneous case, and add a term to ensure
positivity.

THEOREM 1. Suppose that z — r(z, %) is a real-valued polynomial on
C", and suppose that 7(z,%Z) > 0 for ||z|| = 1. Then there is an integer
N and a holomorphic polynomial mapping h : C* — C¥ such that

(31) r(2,2) = B2 = 3 hy(2)]2
for ||z|] = 1.

Proof. We write
(32) r(z,Z) = Z ap2°Z”

where o and (8 are multi-indices, and 0 < |a|] < m and 0 < || <
m. Since 7 is real-valued, we have chg = Cga. By multiplying r by
||z||? if necessary, we may assume that m is even without changing the
hypotheses.

Let ¢ be a complex variable. For a suitable positive constant C we
define a bihomogeneous polynomial Fr on C" x C by

(33)  Folst,2,7) = C(JalP — )™ + Y cagzoz?tm-lalgm A,

We claim that the summation in (33) is positive when ||z||* = [¢|* # 0.
To see this, observe that the summation equals |¢|*™r(Z, 2) and hence
is positive when ||£||2 = 1. On the other hand, this expression is con-
tinuous in both 2 and t. It is positive when ||z]|? = [t|* = 1, and hence
there is a 6 > 0 and a positive number k so that
(34) m?mr(? %) >k >0
when |(]|2]|? = |t|?)] < & and ||z||> + |t|> = 1. Therefore, on the unit
sphere in C™"*! and for |(]|2||? — |t|?)] < § we have Fo(z,t,%,1) > k. On
the other hand, if |(||z]|> — |t|?)| > &, we have that

(35) Fe(z,t,z, Z) >Com + Z Cagzafﬁtm_wfm_lm.

The summation in (35) is a polynomial, so it is continuous, and hence
achieves a minimum value m on the unit sphere in C*t!. If we choose
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C so that C§™ + m is positive, then the bihomogeneous polynomial F¢
will be positive on the unit sphere. By Theorem 6, there is an integer d
and a holomorphic polynomial mapping h(z,t) so that

(36) (1212 + 8% Fe (=, 8, 2,) = [|a(z, 1)]

holds everywhere. Setting ¢t = 1 and then ||z||?> = 1 shows that

(37) 2%r(2,7) = ||h(z, 1)|?

on the unit sphere in C™, and completes the proof. O

3. An isometric imbedding theorem for holomorphic bundles

3.1. Reinterpretation of Theorem 6

The purpose of the third lecture is to reinterpret Theorem 6 in the
language of holomorphic line bundles, and then to generalize it. Let f
be a bihomogeneous polynomial that is positive away from the origin in
CN+*1, The link to bundles arises by first considering complex projective
space P, the collection of lines through the origin in CV+!. We have
the usual open covering of Pn given by open sets U;; here U; consists
of those lines containing a point z with z; # 0. In U; we define f; by

2,z
(38) fi(z,7) = f(, 2m)'
|2
On the overlap U; N Uy, these functions then transform via
2
(39) fe= 1)1
2k

Since (££)™ are the transition functions for the m-th power of the
universal line bundle U™, the positive functions f; determine an Her-
mitian metric on U™. In Section 3.2 we discuss the universal bundle in
more detail.

Suppose that f is a bihomogeneous polynomial of degree 2m. Then it
defines via (38) a metric on U™ if and only if it is positive as a function
away from the origin. This is the sharp form of 2.1.1). This metric is a
holomorphic pullback of the Euclidean metric on U over Pg for some
K if and only if 2.1.3) or 2.1.4) holds. Some tensor power of the bundle
with itself is a holomorphic pullback of the Euclidean metric if and only
if 2.1.5) holds. In Section 3.2 we discuss the relationships with the
Cauchy-Schwarz inequality 2.1.6) and with plurisubharmonicity. Strong
plurisubharmonicity is equivalent to the negativity of the curvature of
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the bundle, or to the strong pseudoconvexity of the unit ball in the total
space of the bundle.

The previous paragraph applies in particular to the function r, from
Example 3. When a < 16, this bihomogeneous polynomial is strictly
positive away from the origin, and hence defines a metric on U* on Py.
By varying the parameter a we see that the corresponding positivity
properties of bundle metrics are also distinct.

We next restate Theorem 6.

THEOREM 7. Let (U™, f) denote the m-th power of the universal
line bundle over P, with special metric defined by f. Then there is
an integer d so that (U™, ||2||**f(2,%)) is a (holomorphic) pullback
g*(U,|¢||?>) of the standard metric on the universal bundle over PN.
The mapping g : P, — PN is a holomorphic (polynomial) embedding.

(U™, f) @ (U, [|2]*) = (U™, |21 £ (2,2)) = (U™, llg(2)]1*).
We have the bundles and metrics
w2 (U™, f) — Pq,
my : (U™, [[e]*f) — Py,
3 : (U, |[¢][*) — P

Thus 71 is not an isometric pullback of 73, but, for sufficiently large
d, w5 is such a pullback.

Yum-Tong Siu suggested to the author a reformulation of Theorem 6
in this language. This important suggestion led Catlin and the author
to what we state as Theorem 8 in these lectures.

3.2. Globalizable metrics

The reinterpretation using line bundles of Theorem 6 for bihomo-
geneous polynomials extends to matrices of bihomogeneous polynomi-
als. Let G(z,%) be a matrix of bihomogeneous polynomials of the same
degree. Suppose that, for each z # 0, the matrix G(z,%) is positive
definite. By elementary Hermitian linear algebra a p-by-p matrix R is
positive definite if and only if it can be written as R = A*A for A of rank
p. Here A* denotes the conjugate transpose of A. Thus, for each fixed
z # 0, we can factorize G(z,Z) as A*A. In general we cannot make A
depend holomorphically on z, even when G is a one-by-one matrix. If a
bihomogeneous polynomial G is positive at each point, then it need not
be a squared norm of a holomorphic mapping, as we have seen in Section
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2. See [18] for some classical results about holomorphic factorization of
operator-valued functions of one complex variable.

Suppose again that G is a matrix of bihomogeneous polynomials and
that G is positive definite away from the origin. Theorem 6 and its
reinterpretation Theorem 7 suggest that we might be able to holomor-
phically factorize ||2|[>*G(z, Z) for sufficiently large d. This is true, and
is a very special case of the general theorem we will prove.

The general result begins with a compact complex manifold M and a
vector bundle E over M, equipped with an Hermitian metric G. We want
to write G = A*A, where A depends holomorphically on its variables,
but this is generally impossible. So we assume that there is also a
line bundle L over M, equipped with an Hermitian metric R satisfying
properties analogous to those of the Euclidean metric on the universal
bundle over projective space. Then we hope that the metric R4G on the
bundle L¢® E is of the form A*A, where A is holomorphic. We interpret
this factorization by saying that R?G is the isometric pullback of the
Euclidean metric on the universal bundle over the Grassman manifold.

Such a conclusion requires certain hypotheses on the metrics; for
example both G and R must be real-analytic. The purpose of this section
is to discuss properties of metrics that are necessary for such a theorem
to hold.

Let G, v denote the Grassman manifold of p planes in complex N-
space. When p = 1 we have complex projective space, and we write as
usual Py for Gy y. Let U, y denote the universal bundle over G, n.
This bundle is sometimes known as the tautological bundle; a point in
U, ~ is a pair (S,¢) where S is a p-dimensional subspace of CV and
¢ €S5. Welet gy denote the Euclidean metric on U, y. By definition
we have

(40) 90((S,u), (S,v)) = v*u = (u,0) = Y _ u;%;.

In (40), the Euclidean inner product (u,v) makes sense because we con-
sider u, v as elements of C¥.

The Euclidean metric on U, y is special. It makes sense to evaluate
it at pairs of points in the total space, even if they have different base
points. To clarify this, let gj : Up ny x U, v — C be defined by

(41) 9o((S1,v1), (S2,v2)) = (v1, ).
Then g is holomorphic in the first variable, anti-holomorphic in the

second, satisfies gy, ) = g4(8, ), and extends the metric in the sense
that gj(a, B) = go(a, 8) when 7(a) = m(3). Henceforth we drop the

prime from the notation, and write go for this function.
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The Euclidean metric go on U, y will be our model for a globalizable
metric. First we study how it behaves under pullbacks. Let M be a
complex manifold, and let A : M — G, y be a holomorphic mapping.
The pullback 7' : h*(Up n) — M is then a bundle over M; a point in
h*(U, ) is a pair (z,u), where z € M, u € U, n, and h(z) = 7(u).
Write @ and 8 for points in h*(U, ). Writing h, as usual for the
map satisfying hn’ = wh., there is a natural metric h*(go) defined on
h*(Up,n) by

(42) h*(QO)(aa/@) = gO(h*a3h*/3)'

We see again that h*(gg) makes sense when a and (3 are based at different
points; we can therefore extend the definition of the metric to a function
h*(go) : h*(Upn) x R*(Up ) as above. The metric h*(go) will also be
globalizable.

For a vector bundle E over M we write E* for its dual bundle and
we write H(M, E*) for the holomorphic sections of E*. When M is
compact, H(M, E*) is a finite-dimensional complex vector space.

DEFINITION 3. Let 7’ : E — M be a holomorphic vector bundle over
a complex manifold M. We suppose that G is an Hermitian metric on
E. We say that G is globalizable if there is a mapping G': Ex E — C
such that the following properties hold:
1. G’ extends the metric: G'(u,v) = G(u,v) whenever 7'(u) = 7' (v).
2. G’ is holomorphic in the first variable: G'(-,v) € H(M, E*).
3. G’ is Hermitian: G'(u,v) = G'(v,u).

Henceforth we will write G instead of G’. Suppose that G is global-
izable and ¢, ..., ¢4 form a basis for H(M, E*), Then there is a matrix
Gy of constants so that (43) holds.

q
(43) G(u,v) = Y Gijbs(w)dr(v).

3,k=1

Not all bundles E admit globalizable metrics. A necessary and sufhi-
cient condition is that, for each non-zero vector v € E there is a section
¢ of E* with ¢(v) # 0. The collection of these sections determines a
holomorphic map to some Gy n.

Next we note that globalizable metrics are preserved under the tensor
product. Suppose for j = 1,2 that Gj; is a globalizable Hermitian metric
on a holomorphic vector bundle Ej; over a complex manifold M. Then
the formula

(44) G(u1 ® uz,v1 ® v2) = Gi(u1,v1)Ga(uz, v2)
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determines a globalizable metric G on E; ® Es. It is natural to write

G = G1Gs.

Suppose that G is globalizable, and that (43) holds. By property
3 of Definition 3, the matrix of coefficients (Gy;) must be Hermitian,
but analogously to Example 3 it can have eigenvalues of both signs.
Thus even when G is a metric, the underlying matrix of coefficients in
(43) need not be positive definite. As in Section 2, if this is positive
definite, then G defines a metric; furthermore we can think of G as
defining an Hermitian inner product on H(M, E*). We then obtain a
holomorphic mapping from M to G, 4 inducing the metric. To see this
concretely, suppose that (Gy;) is a positive definite matrix. Then there
are ¢ independent vectors (; in C? so that Gp; = ((j, (), and hence,
from (43),

q
(45) = (G G (u =) G, > i)

7,k=1

We can use (45) to construct a holomorphic map h : M — Gy, If
we write 1(u) = Y (j¢;(u), then ¢ defines a map from E to C?. For
z € M, write E, for the fibre over z. Then, since ¥ is injective on each
fibre, ¥(E,) is a p-dimensional subspace of C%; we write h(z) = ¢¥(E,).
We see from (45) that G(u, v) = go(h«(u), he(v)). Thus, as u, varies over
the p-dimensional fibre E,, the formula h(z) = > ¢;(2)(u,)(; defines a
p-dimensional subspace of C9.

We summarize our discussion so far in the next proposition.

PROPOSITION 4. Let G be a globalizable Hermitian metric on a holo-
morphic vector bundle V over M. Suppose that the matrix G}; defined
by (43) is positive definite. Then G = h*(gy) for some holomorphic
mapping h : M — Gy, n. Conversely, the pullback of a holomorphic
map h : M — Gy, n defines a globalizable metric on h*(U, y) by (42).
Finally, the tensor product defined by (44) of globalizable metrics is
globalizable.

We return to our favorite example. Let M = P,_; and let V =

1y = U™. The sections of the dual bundle are then the homogeneous
monomials z%, and the globalizable metric G is nothing more than a
bihomogeneous polynomial that is positive away from the origin.

Theorem & will involve both a vector bundle F of arbitrary rank and
a “good” line bundle L by which we tensor. The theorem must hold
when E = L; this is analogous to 2.1.5) for bihomogeneous polynomials.



Proper holomorphic mappings, positivity conditions 365

DEFINITION 4. Let L be a line bundle over M with globalizable
Hermitian metric R.
1) Then R satisfies the global Cauchy-Schwarz inequality (GCS) if

(GCS) |R(u1, uz)|* < R(u1, u1) R(ug, up)
and R satisfies the sharp global Cauchy-Schwarz inequality (SGCS) if
(SGCS) |R(u1,u2)[* < R(uy, u1)R(ug, up)

holds whenever u; # ug and their vector parts are non-zero.
2) L is negative if the unit disk B = {z : R(2,2) < 1} is a strongly
pseudoconvex domain in L.

These properties are analogues of 2.1.6) and 2.1.7). We recall some
standard definitions and use them to clarify when a holomorphic map-
ping to the Grassman manifold is an imbedding. Let g be a fibre met-
ric on a Hermitian vector bundle E over a complex manifold M. We
write Ric(g) for the Ricci curvature form 09(log(Det(g)). Let go be the
Euclidean metric on the universal bundle; its Ricci curvature form is
negative. Thus for nonzero tangent vectors v we have Ric(gp)(v,v) < 0.

PROPOSITION 5. Suppose that M is a compact complex manifold,
and that h: M — Gy, y is a holomorphic mapping. Let E = h*(U,, y)
denote the pullback bundle, and assume we are given the pullback metric
h*(go) on E. Then

1. h is an immersion if and only if the (1,1) form Ric(h*(go)) is
negative.

2. h is injective if and only if for all distinct points z,w in M, there
is u € E, such that, for all nonzero v € E,,, the (SGCS) inequality

(46) |7 (g0) (w, 0)* < [R*(g0)(u, w) | (go) (v, v)
holds.
Proof. We refer to (5] for a proof. O

PROPOSITION 6. Suppose that L is a negative line bundle over a
compact complex manifold M, and that R is a globalizable Hermitian
metric on L. Let N + 1 denote the dimension of H(M, (L*)%). Suppose
that hg : M — PV is a holomorphic immersion, and R® = h%(g0). Then
(GCS) must hold for R, and the curvature of R must be negative. If
also hy is an imbedding, then (SGCS) holds.
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Proof. First we show that (SGCS) holds when hg is an imbedding.
Write {4 for the d-fold tensor product. Since hy is assumed to be injec-
tive, Proposition 5 implies that

R, D)1 < BT, )RS, 1)
and hence that
(47) |R(L1, )" < R(la, 11)* Rla, 12)".

Taking d-th roots of (47) yields (SGCS).

Next we show that R has negative curvature. Since hg is an immer-
sion, Proposition 5 implies that Ric(R?) is negative. Since Ric(R%) =
dRic(R) we see that Ric(R) is also negative.

When R? = h*(gp), we see that B is defined by the equation

(48) r(u) = go(huu, how) = [|H(w)|? < 1.

The domain B will be strongly pseudoconvex if the complex Hessian
of a defining function is positive definite on the boundary. Choosing
a € C", we have

(49) 00r(a, a) = |0H (a)||* = cllal*
whenever OH has maximal rank. Formula (49) shows that B is strongly
pseudoconvex whenever h is an immersion. (I

3.3. Isometric imbedding

Theorem 8 from these lectures is the main result from [5]. In cer-
tain situations where Kodaira’s famous imbedding theorem (See [20])
applies, this result shows that the imbedding can be taken to be an
isometry. This isometric imbedding theorem for holomorphic bundles
includes Theorem 6 as a concrete special case. In [2| Catlin applies
ideas similar to those in the proof to improve a result of Tian. Theorem
8 also generalizes Calabi’s famous result [1] on isometric imbeddings of
the tangent bundle.

We state Theorem 8 in this section. We complete these lectures in
the next section by sketching a proof of the more concrete Theorem
6. The proofs are similar, although things are of course much easier
in the setting of bihomogeneous polynomials. For Theorem 6 we use
the Bergman projection and kernel function for the unit ball B,. For
Theorem 8 we need analogous results for the Bergman projection for the
unit ball in the total space of the line bundle L.

THEOREM 8. Suppose that M is a compact complex manifold. Let E
be a vector bundle of rank p over M with globalizable Hermitian metric
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G. Let L be a line bundle over M with globalizable Hermitian metric R,
and suppose that L is negative and that R satisfies (SGCS). Then there
is an integer dy so that, for all d with d > dy, there is a holomorphic
imbedding hy with hq : M — Gpn so that E® Lt = h3U, N and
GR? = R:(g0).

REMARK 1. Theorem 7 is an immediate corollary. It is the special
case where M is complex projective space P, —1, where E is a power U™
of the universal bundle, with metric determined by the bihomogeneous
polynomial p, and L is the universal bundle U with the Euclidean metric.

3.4. Proof of Theorem 6
To complete these lectures we sketch the proof of Theorem 6.

Proof. (Sketch) Theorem 6 states the equivalence of four statements.
It is obvious that 2) implies 4) and 4) implies 1). It is easy to show that
2) and 3) are equivalent. The strategy of the proof is thus to show that
1) implies 3).

We do this using Hilbert space ideas. As usual L?(B,,) denotes the
Hilbert space of square integrable holomorphic functions on the unit
ball. We let A%(B,) denote the closed subspace of L?(B,) consisting of
holomorphic functions. Let P : L?(B,) — A%(B,) denote the orthogonal
projection, called the Bergman projection. The Bergman kernel function
is the integral kernel corresponding to P. For the unit ball, the Bergman
kernel is well known. We have

(50) B(s,0) = B

(1= {z, Ot
Observe that the Bergman kernel is holomorphic in z and conjugate
holomorphic in { when both variables lie in the ball.

The Bergman kernel for a bounded domain ) is always equal to
S ¢(2)¢;(C), where the ¢; denote a complete orthonormal set for A%(2).
In the case of the ball, normalized monomials form such a complete or-
thonormal set, as is easily seen by integration in polar coordinates. For
the ball we also have the nice formula

(51) B(z,0) = _cal(z,¢)*

for appropriate positive constants c4. In fact ¢y equals % times an
appropriate binomial coefficient.

Next recall that V,, denotes the space of holomorphic homogeneous
polynomials of degree m. We see that V,, is orthogonal to Vj for m # k,
and thus A%(B,) is the orthogonal sum of the V;,.
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Let 7(z,%) be a bihomogeneous polynomial of degree 2m; we can use
r as an integral kernel. We define an integral operator S, on L?*(B,) by

(52) Sph(z) = / r(z ORIV Q).

It follows easily from (52) and the orthogonality of monomials that S,
annihilates Vj for k # m, and that S, maps V}, to itself.

Recall that an operator on a Hilbert space is compact if and only if
it is the norm limit of operators with finite-dimensional range. We will
show that a certain operator T on L*(B,,) satisfies T = Q + K, where
the restriction of Q to A?(B,) is positive, and where K is compact on
L%(B,,). Furthermore, we will have T = ) Ty, where each Ty is zero on
each Vj except for Vi, 4. The compactness of K then implies that there
is an integer dg, so that Ty is positive on Vp,4q for d > dp.

We return to the setting of the theorem, where f denotes the given
bihomogeneous polynomial, and f is assumed to be positive away from
the origin. It is easy to show that statements 2) and 3) from Theorem
6 are equivalent. In fact, for any d, the underlying Hermitian matrix
for ||2|2?f(z, %) is positive definite if and only if the operator on L%*(B,)
defined by the kernel (z,¢)?f(z,¢) is a positive operator from V14 C
A%(B,) to itself. Thus we will choose Ty to be a positive constant times
this operator.

Let Ty be the integral operator on L?(B,) whose integral kernel is

(53) ca(z,w) f(2,0),

where each ¢4 is a positive number. Choose these positive numbers as
in (51). Then we see that T = Y Ty = PSjy, where P is the Bergman
projection.

In other words, the integral kernel of T is

(54) B(z,0)Y casz?T.

Let S denote the operator on L%*(B,) given by multiplication by
f(2,%). Then PS = SP because P integrates with respect to (. Notice
that Sy — S is the operator whose kernel K(z, () is given by

(55) K(z,¢) =Y capz®(@ —7%).

We add and subtract in order to take advantage of the positivity of f.
Thus we write

(56) T =13 Ty=PS;=P(S;—S)+PS=P(S;—S5)+SP.
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Finally we add and subtract the operator PM, where M is multipli-
cation by a nonnegative cut off function x that is positive at the origin
and has compact support. From (56) we obtain

(57) T = P(S; — S) + (SP + PM) — PM.

In (57) the operator PM is compact, because its kernel is smooth and
compactly supported. We claim that the operator SP + PM is positive
on A%(B,). This is easy to show. For h € A%(B,) we have Ph = h.
Also P is self-adjoint. Therefore we have

(58) (SPh + PMh,h)y = ((S + M)h, h),.

But S 4 M is a positive operator, because f + x is strictly positive on
the ball.

Finally we claim that the operator P(Sy — §) is also compact. Its
kernel is

(59)  B(2.0)(f(20) - f(2)=B(z0) Y cas*(C - 2%).

The only singularity for B(z, () occurs on the boundary diagonal, but
the other term in (59) vanishes there, and compensates for the singu-
larity. A precise proof of the compactness then follows from Young's
inequality.

There is a second way to see the compactness. Observe from (59) that
P(S; — §) is a finite sum of bounded multiplication operators c,g2®
times commutators [P,°]. We write W° to avoid confusion. In one

term we multiply by Zﬁ and then apply P; in the other term we apply
P first, which changes the variable from ¢ to z, and then we multiply
by z°. Catlin and the author [4] proved in a general situation (of which
the strongly pseudoconvex case is the easy one) that commutators of P
with bounded multiplication operators are compact. Since the compact
operators form an ideal in the space of bounded operators, we see from
this and (59) that P(Sy — S) is compact.

We have thus shown that > 7y = @ + K where Q is positive on
A%(B,) and K is compact on L%*(B,). Hence, as indicated above, the
restriction of T to V44 is strictly positive on that space for sufficiently
large d. This completes the sketch of the proof of Theorem 6. N

REMARK 2. We have already noted in Proposition 6 that the (SGCS)
is needed for the conclusion of Theorem 8. It is interesting to see how
this arises in the proof. The proof of Theorem 8 uses the Bergman

kernel function in a manner similar to its use in the above proof of
Theorem 6. One replaces (1~ (z,¢)) ™ ! by (1 - R(2,¢))™" !, where R



