Genotyping of Six Pathogenic Vibrio Species Based on RFLP of 16S rDNAs for Rapid Identification

  • Published : 2003.01.01

Abstract

In an attempt to develop a method for rapid and accurate identification of six Vibrio species that are clinically important and most frequently detected in Korea, 16S rDNA restriction fragment length polymorphism (RFLP) of Vibrio type strains, as well as environmental isolates obtained from the Korean coastal area, was analyzed using ten restriction endonucleases. Digestion of the 16S rDNA fragments amplified by polymerase chain reaction (PCR) with the enzymes gave rise to 2~6 restriction patterns for each digestion for 47 Vibrio strains and isolates. An additional 2~3 restriction patterns were observed for five reference species, including Escherichia coli, Aeromonas hydrophila, A. salmonicida, Photobacterium phosphoreum, and Plesiomonas shigelloides. A genetic distance tree based on RFLP of the bacterial species correlated well with that based on 16S rDNA sequences. The very small 16S rDNA sequence difference (0.1%) between V. alginolyticus and V. parahaemolyticus was resolved clearly by RFLP with a genetic distance of more than 2%. RFLP variation within a species was also detected in the cases of V. parahaemolyticus, V. proteolyticus, and V. vulnificus. According to the RFLP analysis, six Vibrio and five reference species were assigned to 12 genotypes. Using three restriction endonucleases to analyze RFLP proved sufficient to identify the six pathogenic Vibrio species.

Keywords

References

  1. Alsina, M. and A.R. Blanch. 1994. A set of keys for biochemical identification of environmental Vibrio species. J. Appl. Bacteriol. 76, 70-85.
  2. Austin, B. and J.V. Lee. 1992. Aeromonadaceae and Vibrionaceae. In R.G. Board, D. Jones and F.A. Skinner (eds.). Identification Methods in Applied and Environmental Microbiology. Society for Applied Bacteriology Technical Series No. 29. Blackwell Scientific Publication, Oxford.
  3. Barry, T., R. Powell, and F. Gannon. 1990. A general method to generate DNA probes for microorganisms. Biotechnology. 8, 233-236.
  4. Bryant, T.N., J.V. Lee, P.A. West, and R.R. Colwell. 1986. Numerical classification of species of Vibrio and related genera. J. Appl. Bacteriol. 61, 437-467. https://doi.org/10.1111/j.1365-2672.1986.tb04308.x
  5. Choudhury, S.R., R.K. Bhadra, and J. Das. 1994. Genome size and restriction fragment length polymorphism analysis of Vibrio cholerae strains belonging to different serovar and biotypes. FEMS Microbiol. Lett. 115, 329-334.
  6. Davis, B.R., G.R. Fanning, J.M. Madden, A.G. Steigerwalt, H.B. Bradford, Jr., H.L. Smithe, Jr., and D.J. Brenner. 1981. Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J. Clin. Microbiol. 14, 631-639.
  7. Dorsch, M., D. Lane, and E. Stackebrandt. 1992. Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int. J. Syst. Bacteriol. 42, 58-63.
  8. Graham, P.H., M.J. Sadowsky, H.H. Keiser, Y.M. Barnet, R.S. Bradley, J.E. Cooper, D.J. De Ley, B.D. W. Jarvis, E.B. Roslycky, B.W. Strijdom, and J.P.W. Young. 1991. Proposed minimal standards for the description of new genera and species of rootand stem-nodulating bacteria. Int. J. Syst. Bacteriol. 41, 582-587.
  9. Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley, and S.T. Williams. 1994. Facultatively anaerobic gram-negative rods. p. 175-289. In R.E. Buchanan and N.E. Gibbons (eds.), Bergey's Manual of Determinative Bacteriology 9th ed. Williams and Wilkins, Baltimore, Maryland.
  10. Kita-Tsukamoto, K., H. Oyaizu, K. Nanba, and U. Simidu. 1993. Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int. J. Syst. Bacteriol. 43, 8-19.
  11. Lotz, M.J., M.L. Tamplin, and G.E. Rodrick. 1983. Thiosulfate-citrate-bile salts-sucrose agar and its selectivity for clinical and marine Vibrio organisms. Ann. Clin. Lab. Sci. 13, 45-48.
  12. Moyer, C.L., F.C. Dobbs, and D.M. Karl. 1994. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 60, 871-879.
  13. Moyer C.L., J.M. Tiedje, F.C. Dobbs, and D.M. Karl. 1996. A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl. Environ. Microbiol. 62, 2501-2507.
  14. Navarro, E., P. Simonet, P. Normand, and R. Bardin. 1992. Characterization of natural populations of Nitrobacter species using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch. Microbiol. 157, 107-115.
  15. Ostling, J., H. Louise, K. Flardh, B. Svenblad, A. Jouper-Jaan, and S. Kjelleberg. 1993. Starvation and Recovery of Vibrio. p. 103-127. In S. Kjelleberg (ed.), Starvation in Bacteria., Plenum Press, New York.
  16. Park, Y., Y. Choi, and B. Min. 2003. PCR-DGGE and PCR-RFLP analyses of the internal transcribed space DNA in the Genus Rhizopus. J. Microbiol. 41, 157-160.
  17. Ralph, D., M. MaClelland, J. Welsh, G. Baranton, and P. Perolat. 1993. Leptospira species categorized by arbitrarily primed polymerase chain reaction (PCR) and by mapped restriction polymorphisms in PCR-amplified rRNA genes. J. Bacteriol. 175, 973-981.
  18. Sambrook, J., E.F. Fritsch, and T. Mamiatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  19. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. J. Mol. Evol. 4, 406-425.
  20. Simidu, U., E. Kaneko, and N. Taga. 1977. Microbiological studies of Tokyo Bay. Microbiol. Ecol. 3, 173-191.
  21. Shirai, H., M. Nishibuchi, T. Ramamurthy, S.K. Bhattacharya, S.C. Pal, and Y. Takeda. 1991. Polymerase chain reaction for detection of the cholera enterotoxin operon of V. cholerae. J. Clin. Microbiol. 29, 2517-2521.
  22. Simidu, U., N. Taga, R.R. Colwell, and J.R. Schwartz. 1980. Heterotrophic bacterial flora of the seawater from the Nansei Shoto (Ryukyu Retto) area. Bull. Jpn. Soc. Sci. Fish. 46, 505-510.
  23. Urakawa, H., K. Kita-Tsukamoto, and K. Ohwada. 1999. 16S rDNA restriction fragment length polymorphism analysis of psychrotrophic Vibrios from Japanese coastal water. Can. J. Microbiol. 45(12), 1001-1007.
  24. Warner, J.M. and J.D. Oliver. 1999. Randomly amplified polymorphic DNA analysis of clinical and environmental isolates of Vibrio vulnificus and other Vibrio species. Appl. Environ. Microbiol. 65(3), 1141-1144.
  25. Weisburg, W.G., S.M. Barns, D.A. Pelletier, and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703.
  26. West, P.A., P.R. Brayton, T.N. Bryant, and R.R. Colwell. 1986. Numerical taxonomy of Vibrios isolated from aquatic environments. Int. J. Syst. Bacteriol. 36, 531-541.
  27. Yoon, Y.J., J.W. Kim, Y.K. Koh, and Y.H. Koh. 1996. The diversity of Vibrio species collected from coastal sea-water. Microorg. Ind. 22, 193-204.