Low-Sampling Rate UWB Channel Characterization and Synchronization


초록

We consider the problem of low-sampling rate high-resolution channel estimation and timing for digital ultrawideband (UWB) receivers. We extend some of our recent results in sampling of certain classes of parametric non-bandlimited signals and develop a frequency domain method for channel estimation and synchronization in ultra-wideband systems, which uses sub-Nyquist uniform sampling and well-studied computational procedures. In particular, the proposed method can be used for identification of more realistic channel models, where different propagation paths undergo different frequency-selective fading. Moreover, we show that it is possible to obtain high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. Our approach leads to faster acquisition compared to current digital solutions, allows for slower A/D converters, and potentially reduces power consumption of digital UWB receivers significantly.

키워드

참고문헌

  1. R. J. Cramer, R. A. Scholtz, and M. Z. Win, 'Evaluation of an ultra-wideband propagation channel.' IEEE Trans. Antennas Propagat., vol. 50,no.5, pp 561-570, May 2002 https://doi.org/10.1109/TAP.2002.1011221
  2. M. Z. Win and R. A. Scholtz, 'Impulse radio: How it works,' IEEE Com-mun. Lett., vol. 2, pp. 36-38, Feb. 1998 https://doi.org/10.1109/4234.660796
  3. M. Z. Win and R. A. Scholtz, 'On the robustness of ultra-wide bandwidthsignals in dense multipath environments,' IEEE Commun. Lett., vol. 2, pp. 51-53, Feb.1998 https://doi.org/10.1109/4234.660801
  4. M. Z. Win and R. A. Scholtz, 'Characterization of ultra-wide band-width wireless indoor communication channel: A communication theo-retic view,' IEEE J. Select. Areas Commun., vol. 20, pp. 1613-1627, Dec. 2002 https://doi.org/10.1109/JSAC.2002.805031
  5. D. Cassioli, M. Z. Win, and A. F. Molisch, 'The ultra-wide bandwidthindoor channel: From statistical model to simulations,' IEEE J. Select.Areas Commun., vol. 20, pp. 1247-1257, Dec. 2002 https://doi.org/10.1109/JSAC.2002.801228
  6. I. O' Donnell et al., 'An Integrated, low-power, ultra-wideband transceiverarchitecture for low-rate indoor wireless system,' in Proc. IEEE CAS Workshop Wireless Communications and Networking, Sept. 2002
  7. R. Fleming et al., 'Rapid acquisition for ultra-wideband localizers,' inProc. IEEE Conf. UWB Systems and Technologies, May 2002
  8. E. Homier and R. Scholtz, 'Rapid acquisition of UWB signals in a densemultipath channel,' in Proc. IEEE Conf. UWB Systems and Technologies,May 2002
  9. J. Y. Lee and R. Scholtz, 'Ranging in a dense multipath environment us-ing an UWB radio link,' IEEE J. Setect. Areas Commun., vol. 20, no. 9,pp.1677-1683, Dec.2002 https://doi.org/10.1109/JSAC.2002.805060
  10. M. Vetterli, P. Marziliano, and T. Blu, 'Sampling signals with finite rate of innovation,' IEEE Trans. Signal Processing, vol. 50, no. 6, PP. 1417-1428, June 2002 https://doi.org/10.1109/TSP.2002.1003065
  11. J. Kusuma, A. Ridolfi, and M. Vetterli,'Sampling of communication sys-tems with bandwidth expansion,' in Proc. IEEE ICC'2002, vol. 3, May 2002, PP.1601-1605
  12. I. Maravic, M. Vetterli, and K. Ramchandran, 'High-resolution acquisitionmethods for wideband communication systems,' in Proc. ICASSP, Apr.2003
  13. J. Kusuma, I. Maravic, and M. Vetterli, 'Sampling with finite innova-tion rate: Channel and timing estimation in UWB and GPS,' in Proc.ICC'2003, May 2003
  14. I. Maravic and M. Vetterli. 'Low-complexity subspace methods for chan-nel estimation and synchronization in ultra-wideband systems,' in Proc.IWUWB, June 2003
  15. I. Maravic, M. Vetterli, and K. Ramchandran, 'High-resolution synchro-nization and channel estimation with sub-Nyquist sampling and applica-tion to ultra-wideband systems,' LCAV Technical report and submitted to IEEE Trans. Signal Processing
  16. P. Stoica and R. Moses, Introduction to Spectral Analysis, EnglewoodCliffs, NJ: Prentice-Hall, 2000
  17. Y. Hua and T. Sarkar, 'Matrix pencil method for estimating parameters ofexponentially damped/undamped sinusoids in noise,' IEEE Trans. Acoust.,Speech, Signal Processing, vol. 38, no. 5, pp. 814-824, May 1990 https://doi.org/10.1109/29.56027
  18. R. Roy and T. Kailath, 'ESPRIT estimation of signal parameters via rotational invariance techniques,' IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, no. 7, pp. 984-995, July 1989 https://doi.org/10.1109/29.32276
  19. B. D. Rao and K. S. Arun, 'Model based processing of signals: A statespace approach,' Proc. IEEE, vol. 80, no. 2, pp. 283-309, Feb. 1992 https://doi.org/10.1109/5.123298
  20. S. E. Bensley and B. Aazhang, 'Subspace-based channel estimation forcode division multiple access communication systems,' IEEE Trans. Com-mun., vol. 44, no. 8., pp. 1009-1020, Aug. 1996 https://doi.org/10.1109/26.535441
  21. A. Paulraj, B. Khalaj, and T. Kailath, '2-D RAKE receivers for CDMAcellular systems,' in Proc. IEEE GLOBECOM'94, vol. 1, San Francisco,CA, Dec. 1994, PP. 400-404
  22. Q. Spencer et al., 'A statistical model for the angle-of-arrival in indoormultipath propagation,' in Proc. IEEE VTC'97. May 1997, pp. 1415-1419
  23. M. Z. Win, G. Chrisikos, and N. R. Sollenberger, 'Performance of rake reception in dense multipath channels: Implications of spreading bandwidthand selection diversity order,' IEEE J. Select. Areas Commun., vol. 18.pp. 1516-1525,Aug. 2002 https://doi.org/10.1109/49.864015
  24. P. Stoica and A. Nehorai, 'MUSIC. maximum likelihood and Cramer-Raobound,' IEEE Trans. Acoust., Speech, Signul Processing, vol. 37, No. 5,pp. 720-741.May 1989 https://doi.org/10.1109/29.17564
  25. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975