A Study on the Vulcanization Reaction of Modified NR Blends by In-Situ Electrical Property Measurement

전기적 특성의 in-situ 측정에 의한 개질된 NR 블랜드의 가황 반응에 관한 연구

  • Ha, Ki-Ryong (Department of Chemical Engineering, Keimyung University) ;
  • Suh, Soong-Hyuck (Department of Chemical Engineering, Keimyung University) ;
  • Rho, Seung-Baik (Department of Chemical Engineering, Keimyung University) ;
  • Lee, Seung-Hyun (Department of Chemical Engineering, Keimyung University) ;
  • Ahn, Won-Sool (Department of Chemical Engineering, Keimyung University)
  • 하기룡 (계명대학교 공과대학 화학공학과) ;
  • 서숭혁 (계명대학교 공과대학 화학공학과) ;
  • 노승백 (계명대학교 공과대학 화학공학과) ;
  • 이승현 (계명대학교 공과대학 화학공학과) ;
  • 안원술 (계명대학교 공과대학 화학공학과)
  • Published : 2003.09.30

Abstract

A vulcanization reaction characteristics of an isoprene rubber (IR)-modified natural rubber/carbon black (NR/CB) composite was studied using in-situ electrical property measuring technique. Since the electrical conductivity of the sample composite would be changed continuously during the vulcanization reaction by rearranging of the carbon black particles within the sample, volume resistivity (${\rho}$) might be obtained as a function or reaction time. A stabilization time ($t_i$), maximum reaction speed time ($t_p$), and volume resistivity at that time(${\rho}_p$) were defined from the data for the Arrhenius analysis. Volume resistivity ${\rho}$ showed a comparatively high value of ${\sim}10^8$ order before the reaction started, and dramatically decreased to be stabilized within $1{\sim}2$ minutes as soon as the reaction started. As the more time elapsed, thereafter, ${\rho}$ decreased monotonously to a certain constant value through a peak, ${\rho}_p$ at time $t_p$, which was considered as the maximum reaction rate. As a result, while $t_i$ values were comparatively constant as $1{\sim}2$ minutes, $t_p$ values showed to become shorter and shorter as the reaction temperature.

이소프렌 고무(IR)로 개질된 천연고무계의 NR/CB 복합재료의 가교반응에 대하여 반응 도중의 전기적 성질 변화를 in-situ로 측정함으로서 주어진 샘플의 가교반응 특성을 연구하였다. 샘플의 전기적 성질이 가황반응이 진행되는 동안 샘플 내의 카본 블랙의 재정렬에 의해 연속적으로 변하기 때문에 샘플의 체적고유저항 값(${\rho}$)의 변화를 반응시간의 함수로 표시하였다. 이로부터, 반응온도에 따른 반응시작 안정화시간($t_i$), 최대반응속도 시간($t_p$), 및 이 때의 최대반응속도 체적고유저항값(${\rho}_p$)을 정의하여 이로부터 Arrhenius 도시를 이용한 해석을 시도하였다. 체적 고유저항값 ${\rho}$는 반응시작 전에는 ${\sim}10^8$ order의 높은 값을 보이다가 반응시작 후에 급격히 떨어지는 안정화 시간, $t_i$를 거친 후에 다시 최대반응속도를 보이는 $t_p$에서 피크를 보이며, 그 이후에는 단조 감소하여 일정한 값으로 수렴하는 것이 관찰되었다. 한편, 샘플의 반응온도가 높아질수록 $t_i$$1{\sim}2$분으로서 상대적으로 일정한 데 반하여, $t_p$는 점점 더 짧아져 $160^{\circ}C$의 반응온도에서는 3분 정도로까지 짧아지는 것이 관찰되었다. 또한 반응의 인가 주파수에 대한 변화로서, 약 1,000Hz이하의 저주파수에서는 상대적으로 낮은 활성화에너지($E_a$)값을 보였으나, 10,000Hz의 높은 측정주파수에서는 더 큰 $E_a$값을 나타냄으로서 반응온도변화에 민감함을 보여주었다.

Keywords

References

  1. P. K. Das, R. N. Datt, and D. K. Basu, 'Cure Modification Effected by Cycloalkylthioamines in The Vulcanazation of NR Accelerated by Thiocar-bamyl Sulfenamides and Dibenzothiazyl Disulfide', Rubber Chem. Technol., 61, 760 (1988)
  2. E. Morita and E. J. Young, 'A Study of Sulfena-mide Acceleration', Rubber Chem. Technol., 36, 844 (1963)
  3. D. Pal, B. D. Adhikari, K. Baus, and A. K. Chaudhuri, 'Study of Cure Synergism of The Thio-carbamylsulfenamide Dibenzothioazyl Disulfide Acc-elerator System in The Vulcanization of Natural Rubber', Rubber Chem. Technol., 56, 827 (1983)
  4. M. Morton, 'Rubber Technology', Van Nostrand Reinhold, New York, 1973
  5. G. A1liger and I. J. Sjothum, 'Vulcanization of Elastomer', Van Nostrand Reinhold, New York, 1963
  6. F. P. Baldwin and G. Ver Strate, 'Polyolefin Elasto-mers Based on Ethylene and Propylene', Rubber Chem. Technol., 45, 709 (1972)
  7. M. R. Krejsa and J. L. Koenig, 'A Review of Sulfur Crosslinking Fundamentals for Accelerated and Unaccelerated Vulcanization', Rubber Chem. Technol., 66, 376 (1993)
  8. B. Hom, 'Rubber Technology and Manufacture', The Plastics and Rubber Institute, New York, 1982
  9. S. C. EinHorn, Rubber World, 148, 40 (1963)
  10. B. C. Lee, D. S. Lee, and W. Y. Kim, 'Effect of Tenperature on the Reinforcement of Carbon Black Filled Rubber Vulcanizates', Polyrner(Korea), 21, 597 (1997)
  11. V. J. Duchacek, 'Effect of temperature on the course of thiuram-acceleratcd sulfur vulcanization', Appl. Polym. Sci., 19, 1617 (1975) https://doi.org/10.1002/app.1975.070190613
  12. D. S. Champbell, 'Structural Characterization of Vul-canizates. XI. Network-Bound Accelerator Residues', Rubber chem. Technol., 44, 771 (1971)
  13. S. S. Labana, 'Encyclopedia of Polymer Science and Engineering', John Wiley & Sons, New York, 1986
  14. R. N. Rees, 'Encyclopedia of Polymer Science and Engineering', John Wiley & Sons, New York, 1986
  15. P. W. Allen, D. Barnard, and B. Saville, Chem. Brit., 6, 382 (1970)
  16. N. J. Morrison and M. Porter, 'Temperature Effects on The Stability of Intermediates and Crosslinks in Sulfur Vulcanization', Rubber Chem. Technol., 57, 63 (1984)
  17. A. Y. Coran and F. R. Eirich, 'Science and Technology of Rubber', Academic Press, New York, 1978
  18. D. Rivlin, 'Surface Properties of Carbon', Rubber Chem. Technol., 40, 307 (1971)
  19. M. B. Heaney, Physica A, 'Electrical Transport Measurements of a Carbon-Black Polymer Com-posite', 241, 296 (1997)
  20. H. Tang, J. Pio, X. Chen, Y. Luo, and S. Li, 'The positive temperature coefficient phenomenon of vinyl polymer/CB composites', J. Appl. Polym. Sci., 48, 1795 (1993) https://doi.org/10.1002/app.1993.070481013
  21. G. Bahder, IEEE Sumer power meeting & EHV Conf, 1970
  22. A. R. Kemp and D. B. Hermann, Rubber Tech., Conf, 1938
  23. M. H. Polley and B. B. S. T. Boonstra, 'Carbon Blacks for Highly Conductive Rubber', Rubber Chem. Technol., 30, 170 (1957)
  24. L. Benguigui, J. Yacubowich, and M. Narkis, 'On the percolative behavior of carbon black cross-linked polyethylene systems', J. Polym. Sci., Polym. Phys. Ed., 25, 127 (1987)