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An Efficient Model Parameter Compensation Method for
Robust Speech Recognition

Yong-Joo Chung

An efficient method that compensates the HMM parameters for the noisy speech
recognition is proposed. Instead of assuming some analytical approximations as in the
PMC, the proposed method directly re-estimates the HMM parameters by the segmental
k-means algorithm. The proposed method has shown improved results compared with the
conventional PMC method at reduced computational cost.
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1. Introduction

Model parameter compensation methods have shown successful results in noisy
speech recognition based on hidden Markov models (HMMs) [1}{2]. Among them, the
parallel model combination (PMC) has been quite effective. Compared to other
adaptation methods, its computational burden is relatively small and it does not require
any additional adaptation data except the noise samples in the testing speech. However,
the PMC assumes some analytical approximations for the convenience of analysis,
which may introduce some errors in the model parameter adaptation process [3].
Another source of the errors may come from the inverse discrete cosine transformation
(DCT) which the PMC utilizes to obtain the log-spectrum mean vector from the

cepstrum mean vector as follows.

r=0C pn )

However, since the two vector spaces have different dimensions, the accurate
inverse DCT can not be performed. That is, different vectors from the log-spectrum
domain can be transformed to the same cepstrum vector so the inverse DCT will fail
to recover the original values.

In our proposed method, we apply the segmental k-means algorithm [4] to find the
statistics that are used to compensate the HMM parameter vectors in combination with
the noise in the testing speech. Since the values of the statistics are obtained during
the training, the computational cost in the testing is relatively small. Also, since the
method does not assume the analytical approximations required in the conventional

PMC, it can take into account the acoustical variations due to the noise more directly.

2. Compensation using the segmental k-means algorithm

2.1. Noise Assumption

We assume that the noise-corrupted speech in the cepstral domain is characterized
by the following nonlinear equation.
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Y =Clog(X+N)

2
= C log X+ C log(i+exp(log N— log X))

where X represents the linear spectral vector of the clean speech and N is the
linear spectral vector of the additive noise signal. And # represents a unit vector while

C, the matrix representing the DCT [5].
2.2. Mean Vector Adaptation

In HMM-based speech recognition, the parameter estimation is usually done by

using the segmental k-means algorithm. Instead of using the clean speech, the

noise-corrupted speech ¥ ¢ may be applied to the algorithm to obtain the updated

mean vector as follows.

g:ly,(j, B(C log X+ C log(i+exp(log N— log X))
iIYt(jy k)

=

i:'.lrt(i, k)(C log(i+exp(log N— log X ,)))

IR
= p 5+ E(C log(i+exp(log N— log X ))))

= M fk'*‘
(3)

Lot eh

Here, ¥ (7, k) is the probability of being in state j at time t with k-th mixture
component accounting for Yf. In the above equation, we need to find the value of the
noise N. We assume the noise to be deterministic and then, g j is easily obtained as
follows by ignoring the effect of the variance of X , [2].

yo j‘c/e =E(Xt)

4
£ j = C log(i+exp(log N—log ¢ 7))

In our proposed method, we first obtain the mean vectors of X ; during the
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training session and use it in the testing session to find g j which is added to the
original mean vector g . We can reliably estimate g 7 during the training by using
a large amount of clean speech and efficiently compensate the mean vectors using the

noise N in the testing speech without performing the inverse DCT.
2.3. Covariance Adaptation

The covariance matrix for the noisy speech can be similarly obtained. However, for

the compensation of the covariance, we need to know the noise N in advance during

the training session to find the necessary statistics. Therefore, the effect of the

mismatch between the assumed noise N during the training and the observed noise N

in the testing should be compensated using the Taylor series approximation as follows.

Clog(i + exp(log N—log X))~
Clog(i + exp(log N—log X,)) ®)

dClog(i+ exp(log N— log X,))

N (N-N

By using the above approximation in (5), the updated covariance matrix is obtained

as follows.

C=E(Yi-p )N Yi—a DN = BUY, YD+ asn s
C ~ ¢ T (6)
— 2E(YY) ¢ 3

Also,
E(Y$) = E(Clog X,)+ E(Clog(i+ exp(log N—log X))

8 Clog (i+ exp(log N—log X)) _
+E([ N D( N-N)

The use of vector Taylor series have been done in the previous works [2][6], but

our approach differs in that the derivatives are estimated during the training phase and
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later used for testing. The proposed method can be also applied to the dynamic
parameters as well. This is another advantage over the PMC where the delta and the
delta-delta parameters cannot be compensated directly if linear regression coefficients

are used for the dynamic parameters.

3. Experimental Results
3.1. Data Preparation

In this section, the performance of the proposed method of adapting the HMM
parameter vectors is evaluated on speaker-independent isolated word recognition
experiments. The vocabulary consists of 75 phoneme-balanced Korean words. And, the
basic recognition unit is the set of 32 phoneme-like units that are modeled by the
left-to-right continuous density HMM. The baseline HMM is trained by the segmental
k-means algorithm using 4,500 utterances from 60 speakers. For the testing, the
noise-corrupted 6,000 utterances from 80 speakers are used. The noisy speech was
obtained by adding a car noise to the clean speech at various signal-to-noise ratios
(SNRs). 13-th order mel-frequency cepstral coefficients (MFCCs) and their time
derivatives (delta-MFCCs) using the regression coefficients are considered as the feature

vectors.
3.2. Results

In <Table 1>, we compare the recognition rates of the proposed method with other
approaches when static 13-th order MFCCs are used as the feature vectors. First, the
recognition rates of the baseline recognizer with clean speech HMMs are shown. As
there was no effort for compensation in the baseline recognizer, the recognition rate
dropped severely at 20dB or below. We also show the recognition results when the
baseline recognizer was retrained at the same SNRs as in the testing (matched
conditions). The recognition results were improved considerably compared with the
clean speech HMMSs because the acoustic variation due to noise can be more
successfully reflected in the HMM during the training process.

In <Table 1>, we compare the results of the proposed method with the
conventional PMC methods. We could see that better performance is obtained when we

adapt only mean vectors. Compensating the diagonal covariance matrix in addition to
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the mean vectors did not lead to improved results in the proposed method as well as
in the PMC methods. This degraded performance with the variance adaptation have
also been reported in some previous works [6]. The reduced values of the estimated
covariances may be the reason for the weak robustness against noise and speaker
variability resulting in poor performances. And, generally, for the variance adaptation,
we will need more adaptation data than for the mean vector. The noise samples in the
testing speech which we used for the compensation may be not enough for the reliable
estimation of the covariance matrix. The results from the log-normal PMC and log-add
PMC are both presented.

<Table 1> Comparison in the word recognition rates (%) of the proposed method with other
approaches when static 13-th order MFCCs are used as the feature vectors.

0dB 10dB 20dB
Clean speech HMM 325 713 88.7
Matched Conditions 844 91.8 94.3
log-normal PMC
82.6 90.8 93.8
(mean only)
log-normal PMC
. 73.9 89.8 93.1
(mean + variance)
PMC log-add 82.7 90.6 93.7
Proposed method
83.6 91.5 939
(mean only)
Proposed method
. 83.4 91.2 93.9
(mean + variance)

The results of the log-add PMC were comparable to the log-normal PMC although
the log-add PMC is a simplified version. This may be due to the fact the log-normal
PMC introduces some analytical approximations. We also note that the inverse DCT
used in the PMC methods is another reason for the possible errors occurring in the
domain transformation. We could see that the proposed method outperformed the PMC
methods entirely. In particular, at 0dB, the recognition rate of the proposed method
with only mean vector adaptation was 83.6% while 82.7% was obtained for the
log-add PMC. This means that we could reduce by half the difference in the
performance between the log-add PMC and the matched condition HMMs. This is
remarkable considering the fact that the retraining method may give us the benchmark
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performance attainable.

In <Table 2>, we show the results when the delta-MFCCs are added to form 26-th
order feature vectors and only mean vectors are compensated. As expected, the
recognition rates were increased considerably for all the approaches compared with the
results in <Table 1>. But, for the PMC methods, compensating the delta- MFCC mean
vectors resulted in some performance degradation. There seems to be some
approximation errors in (5) for updating the delta-MFCC mean vectors. However, in
our proposed algorithm, we can see far better recognition results when we update the
delta-MFCC mean vectors in addition to the static mean vectors, because the proposed
method adapts the delta-MFCCs mean vectors directly using the statistics obtained
during the training.

<Table 2> Comparison in the word recognition rates (%) of the proposed method with other
approaches when the delta-MFCCs are added to the feature vectors. The scores in the parenthesis

are for the cases when only static means are updated.

0dB 10dB 20dB
Clean speech HMMs 55.7 89.9 94.6
Matched conditions 89.1 95.6 975
log-normal PMC
86.7 (86.9) 94.1 (93.7) 96.8 (93.8)
(mean only)
log-add PMC 86.1 (87.1) 93.9 (93.8) 96.7 (96.7)
Proposed method
90.4 95.9 97.5
(mean only)

To see the effect of the proposed method when detailed acoustic phonetic models
are used, we show in <Table 3>, the results of the compensation when 255 tri-phone
models are used instead of the 32 phoneme like units. 26-th order MFCCs are used as
the eature vectors and delta-MFCC mean vectors are not compensated for the log-add
PMC. Although, the baseline recognition rates are quite high even at 0dB, we can see
that the proposed method improves recognition results compared with the log-add PMC
method as expected.
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<Table 3> Comparison in the word recognition rates (%) of the proposed method with other
approaches when 255 tri-phone models are used.

0dB 10dB 20dB

Clean speech HMMs 82.8 95.8 98.3
Matched Conditions 96.9 98.7 98.8
Log-add PMC 94.7 97.4 98.3
Proposed Method 95.9 97.9 98.6

4. Conclusions

In this paper, we proposed an efficient method for the HMM parameter
compensation in noisy speech recognition. As the method utilizes the statistics obtained
during the segmental k-mean training process, simple adaptation is performed using the
noise samples in the testing speech without requiring much computational cost in the
testing. It also has the merit that dynamic parameters are easily compensated without
requiring analytical approximations used in the previous approaches. From the
experimental results, we could see that it outperformed the conventional PMC methods

where some approximations are assumed for the convenience of analysis.
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