Radioresistance of Dendritic Cells

수지상세포의 방사선 저항성에 대한 연구

  • Kim, Eun-Sil (Radiation Health Research Institute) ;
  • Kim, Chong-Soon (Radiation Health Research Institute) ;
  • Li, Ming-Hao (Department of Nuclear Medicine Chonnam National University Hospital) ;
  • Bom, Hee-Seung (Department of Nuclear Medicine Chonnam National University Hospital) ;
  • Min, Jung-Joon (Department of Nuclear Medicine Chonnam National University Hospital) ;
  • Jeong, Hwan-Jeong (Department of Nuclear Medicine Chonnam National University Hospital) ;
  • Kim, Seong-Min (Department of Nuclear Medicine Chonnam National University Hospital) ;
  • Heo, Yeong-Jun (Department of Nuclear Medicine Chonnam National University Hospital) ;
  • Song, Ho-Chun (Department of Nuclear Medicine Chonnam National University Hospital) ;
  • Lee, Je-Joong (Department of Internal Medicine Chonnam National University Hospital)
  • Published : 2003.06.30

Abstract

Purpose: To evaluate radiation sensitivity of dendritic cells in comparison with lymphocytes. Materials and methods: T lymphocytes captured from peripheral blood were irradiated by 0 Gy, 10 Gy, 30 Gy. Apoptosis was measured by flowcytometry for staining of Annexin V 4 hours after irradiation. Immature and mature dendritic cells processed from blood hematopoietic stem cell were irradiated by 0 Gy, 10 Gy, 30 Gy, 100 Gy respectively and apoptosis was measured by flowcytometry with time difference as 4h, 24h and 48h after irradiation. Morphometric analysis by percent nucleus was measured in three cell groups, also. Results: Lymphocytes showed radiation sensitivity by increasing apoptotic fraction according to radiation dose. However, both mature and immature dendritic cells showed consistent fraction of apoptosis in spite of increasing radiation dose. Percent nucleus ratio is significantly higher in lymphocytes than that of mature or immature dendritic cells. Stimulation of T-cell by dendritic cells was not changed after irradiation. Conclusion: Dendritic cells showed radioresistance which was associated with small size of nucleus in comparison with lymphocytes and this result would be used as a basal data of radio-labelling for the cellular trafficking studios in nuclear medicine fields.

목적: 림프구와 비교되는 수지상 세포의 방사선 민감성을 보기 위하여 본 연구를 시행하였다. 대상 및 방법: 말초혈액에서 분리한 T 림프구에 0 Gy, 10 Gy, 30 Gy의 방사선을 조사하고 4시간 후에 유세포 분석기를 이용하여 선량별 세포고사 빈도를 관찰하였다. 또한 조혈모세포에서 미성숙 및 성숙 수지상 세포를 단계적으로 분리 배양하여 각각 0 Gy, 10 Gy, 30 Gy, 100 Gy의 방사선을 조사하고 4시간, 24 시간 그리고 48 시간 후에 선량별 세포고사 빈도를 관찰하였다. 사이토스핀(cytospin) 슬라이드에 림프구와 미성숙 및 성숙 수지상세포를 $3{\times}104$개 씩 분주하고 May Grunwald-Giernsa 염색한 후, 광학 현미경 하에서 각각의 세포군 당 100개의 세포에서 세포 면적당 핵의 면적 비를 측정하였다. 결과: 림프구에서는 방사선조사 선량별로 세포고사 빈도가 유의하게 증가하였으나, 수지상 세포에서는 그 분화정도나 방사선조사 선량에 따른 세포고사의 빈도차이가 없었다. 또한 수지상세포는 방사선선량과 관계없이 용량에 의존적으로 강력한 T-세포 자극능을 보였다. 림프구의 세포에 대한 핵의 면적 비는 미성숙 및 성숙 수지상세포의 세포에 대한 핵의 면적 비보다 현저히 큰 반면, 두 가지 수지상세포간에 유의한 차이는 없었다. 결론: 수지상세포는 그 분화도와 상관없이 림프구에 비하여 방사선 저항성을 나타내었고, 이는 세포의 형태적 차이에 따른 표적의 크기와 관련이 있을 것으로 생각되며, 향후 분자 생물학적인 연구의 기초 자료로 활용할 수 있을 것으로 생각된다.

Keywords

References

  1. Banchereau J, Steinman RM Dendritic cells and the control of immunity. Nature 1998;392:245-52
  2. Tarte K, Klein B. Dendritic cell-based vaccine: a promising approach for cancer immunotherapy. Leukemia 1999;13:653-63
  3. Avigan D. Dendritic cells: development, function and potential use for cancer immunotherapy. Blood reviews 1999;13:51-64
  4. Fernandez NC, Lozier A, Rament C, Paola RC, Bellet D, Suter M, et al. Dendritic cells directly trigger NK cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999;5:405-11
  5. KIM JY. Radiation effects on cellular systems. In: Basic Radiobiology. Seoul: Ryo Moon Gak, 1987. p. 65-85
  6. Fearnley DB, Whyte LF, Camoutsos SA, Cook AH, Hart DNJ. Monitoring human blood dendritic cell numbers in normal individuals and in stern cell transplantation. Blood 1999;93:728-36
  7. Austyn JM New insights into the mobilization and phagocytic activity of dendritic cells. J Exp Med 1996;183:1287-92
  8. Matsuno K, Ezaki T, Kudo S, Uehara Y. A life stage of particle-laden rat dendritic cells in vivo: Their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. J Exp Med 1996;183: 1865-78
  9. Inaba K, Inaba M, Naito M, Steinman RM Dendritic Cell progenitors phagocytose particulates, including Bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J Exp Med 1993;178: 479-88
  10. Svensson M, Stockinger B, Wick MJ. Bone marrow-derived dendritic cells can process bacteria for MHC I and MHC II presentation to T cells. J Immunol 1997;158:4229-36
  11. Sallusto F, Cella M, Danieli C and Lanzavecchia A Dendritic cells use macropinocytosis and the mannose receptor to concentrate antigen to the MHC class II compartment. Downregulation by cytokines and bacterial products. J Exp Med 1995;182:389-400
  12. Sallusto F, Lanzavecchia A Efficient presentation of soluble antigen by cultured hmnan dendritic cells is maintainedby granulocyte/macrophage colyny-stimulation factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994;179:1109-18
  13. Lotze MT. Getting to the source: dendritic cells as therapeutic reagents for the treatment of patients with cancer. Ann Surg 1997;226:1-5
  14. Lee S, Elenbaas B, Levine A, Griffith J. P53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 1995;81:1013-20
  15. Jayaraman L, Prives C. Activation of P53 sequence-specific DNA binding by short single strands of DNA requires the P53 C-terminus. Cell 1995;81:1021-9
  16. McCarthy SA, Symonds HS, Dyke TV. Regulation of apoptosis in trangenic mice by simian virus 40 T antigen-mediatedinactivation of P53. Proc Natl Acad Sci USA 1994;91:3979-83
  17. Sontag W, Kned1itschek G, Weibezahn KF, Dettinger H. The DNA content of some mannnalian cells measured by flow cytornetry and its influence on radiation sensitivity. Int J Radiat Bioi 1990;57:1183-93