DOI QR코드

DOI QR Code

Change of Heavy Metals in the Surface Sediments of the Lake Shihwa and Its Tributaries

시화호 및 주변 하천 표층 퇴적물의 중금속 분포 변화

  • Kim, Kyung-Tae (Ocean Climate & Environment Research Division, KORDI) ;
  • Kim, Eun-Soo (Ocean Climate & Environment Research Division, KORDI) ;
  • Cho, Sung-Rok (Ocean Climate & Environment Research Division, KORDI) ;
  • Park, Jun-Kun (Ocean Climate & Environment Research Division, KORDI) ;
  • Park, Chung-Kil (Department of Environmental Engineering, Pukyong National University)
  • 김경태 (한국해양연구원 해양기후.환경연구본부) ;
  • 김은수 (한국해양연구원 해양기후.환경연구본부) ;
  • 조성록 (한국해양연구원 해양기후.환경연구본부) ;
  • 박준건 (한국해양연구원 해양기후.환경연구본부) ;
  • 박청길 (부경대학교 환경공학과)
  • Published : 2003.12.31

Abstract

In order to understand the distribution of changes of geochemical characteristics in surface sediments according to various environmental changes around the artificial Lake Shihwa, surface sediments were sampled at $13{\sim}15$ sites form 1997 to 1999 and analyzed by C/S analyzer, ICP/MS and AAS. The average $S/C_{org}$ ratio was 0.35 in the surface sediments, which is similar to 0.36, the characteristic ratio of marine sediments. Heavy metal contents and enrichment factors in the surface sediments tended to be decreasing from the head to the mouth of the Lake Shihwa. With the deposition of fine-grained sediments in the central part of lake, anoxic water column induced the sulfides compounds with Cu, Cd and Zn. Metals such as Al, Fe, Cr, Co, Ni, Cu, Zn and Cd except for Mn and Pb showed relatively high correlation coefficients among them. The contents of Cr, Co, Ni, Cu, Zn and Cd in the surface sediments of the lake were two to five times higher than those in the lake before dike construction and also in outer part of the dike. These are mainly due to the Input of untreated industrial and municipal waste-waters into the lake, and the accumulation of heavy metals by limitation of physical mixing. Although metal contents of the surface sediments at the sites near the water-gate due to outer seawater inflow tended to be lower than those during the desalination, heavy metals were deposited in areas around the new industrial complex in the evidence of spatial distribution of heavy metals in the sediments. This is mainly due to the input of untreated waste-waters from tributaries.

Keywords

References

  1. 김경태. 2001. 연안 간척으로 조성된 인공호수 시화호의 환경변화에 따른 중금속 거동. 부경대학교 박사학위논문. 199 p.
  2. 김경태, 이수형, 김은수, 조성록, 박청길. 2002. 시화호와 주변 하천 표층수중의 중금속 거동 특성. 한국해양환경공학회지, 5(1), 51-67.
  3. 김은수, 김경태, 조성록. 1998. 시화호 해수 및 표층퇴적물의 생지화학적 연구. 해양연구, 20(3), 237-250.
  4. 나공태. 2000. 시화호 퇴적물 중 수은분포에 관한 연구. 한양 대학교 석사학위논문. 69 P.
  5. 박용철, 박준건, 한명우, 손승규, 김문구, 허성회. 1997. 시화 호 산화- 환원 환경하의 용존성 유, 무기 화합물의 생지화 학적 연구. 한국해양학회지 바다, 2(2), 53-68.
  6. 심무준, 김은수, 김경태, 이기복, 강화성, 이광우. 1998 시화호 퇴적물의 유기탄소, 황 및 중금속 분포. 한국물환경학회지, 14(4), 469-482
  7. 조영길. 1994. 한반도 주변 퇴적물 중 중금속의 분포와 기원에 관한 연구. 서울대학교 박사학위논문262 P.
  8. 조영길, 이창복, 최만식. 1994. 남해 대륙붕 표층 퇴적물 중 중금속의 분포 특성. 한국해양학회지, 29(4), 338-356.
  9. 천종화, 이희일, 한상준. 1998. 시화방조제 건설이후 시화호 내 퇴적환경변화. 한국해양환경공학회 1998년도 춘계학술대회논문집, p. 61.
  10. 최만식, 천종화, 우한준, 이희일. 1999. 시화호 표층퇴적물의 중금속 및 퇴적상 변화. 한국환경과학화지, 8(5), 593-600.
  11. 최정훈, 강정원, 홍대벽, 박용안. 2000. 시화호 퇴적물의 유기 탄소, 유기질소 및 중금속 함량과 분포 한국해양학회지 바다, 5(4), 276-284.
  12. 한국수자원공사.농어촌진흥공사. 1995. 시화지구 담수호 수질보전대책수립 조사보고서. 641 p.
  13. 한국수자원공사. 농어촌진흥공사. 1996. 시화방조제 방재차원 배수갑문 운영에 따른 수질조사 결과보고서. 242 p.
  14. 한국수자원공사. 1998. 시화호 수질관리 대책 수립 연구.
  15. 한국해양연구소. 1997. 시화호의 환경변화조사 및 보전대책 수립에 관한 보고서(1차년도). 169 P.
  16. 한국해양연구소. 1999. 시화호의 환경변화조사 및 보전대책 수립에 관한 보고서 (3차년도). 363 P.
  17. 한명우, 박용철, 허성회. 1997. 시화호에서 암모니아와 납의 용출. 한국해양학회지 바다, 2(2), 69-77.
  18. 현상만, 천종화, 이희일. 1999. 시화호의 퇴적환경과 중금속 오염. 한국해양학회지 바다, 4(3), 198-207.
  19. Ahn, I.Y., Y.C. Kang, and J.W. Choi. 1995. The influence of industrial effluents on intertidal benthic communities in Panweol, Kyeonggi Bay(Yellow Sea) on the west coast of Korea. Mar. Pollut. Bull., 30(3), 200-206. https://doi.org/10.1016/0025-326X(94)00125-S
  20. Berner, R.A. and R. Raiswell. 1984. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta, 47, 855-862. https://doi.org/10.1016/0016-7037(83)90151-5
  21. Calvert, S.E. 1976. Mineralogy and geochemistry of nearshore sediments. p. 187-280. In: Chemical Oceanography,Vol. 6, 2nd ed., ed. by Riley, J.P. and R. chester. Academic Press, London.
  22. Cho, Y.G., S.R. Yang, and K.Y. Park. 1997. Metals in coastal sediments adjacent to the Youngkwang nuclear powerplant, west coast of Korea. J. Korea Soc. Oceanogr., 32(3), 112-119.
  23. Forstner, U. 1981. Metal concentrations in river, lake, and ocean water. p. 71-109. In: Metal pollution in the aquatic environment, 2nd ed., ed. by Forstner, U. and G.T.W. Wittmann. Spring-Verlag, Heidelberg.
  24. Horowitz, A.J. 1991. A primer on Sediment-Trace Element Chemistry. Lewis pub., Chelsea. 136 p.
  25. Huerta-Diaz, M.A. and J.H. Morse. 1992. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta., 56, 2681-2702. https://doi.org/10.1016/0016-7037(92)90353-K
  26. Jung, H.S., C.B. Lee, Y.G. Cho, and J.K. Kang. 1996. A mechanism for the enrichment of Cu and delpetion of Mn in anoxic marine sediments, Banweol intertidal flat, Korea. Mar. Pollut. Bull., 32(11), 782-787. https://doi.org/10.1016/S0025-326X(96)00031-8
  27. Leventhal, J.S. 1983. An interpretation of carbon and sulfur relationship in Black Sea sediments as indicator of environments of deposition. Geochim. Cosmochim. Acta, 47, 133-137. https://doi.org/10.1016/0016-7037(83)90097-2
  28. Lewis, B.L. and W.M. Landing. 1992. The investigation of dissolved and suspended-particulate trace metal fractionation in the Black Sea. Mar. Chem., 40, 105-141. https://doi.org/10.1016/0304-4203(92)90050-K
  29. Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manage., 19(2), 81-97. https://doi.org/10.1007/BF02472006
  30. Salomons, W. and U. Forstner. 1984. Metals in the Hydrocycle. Springer-Verlag, Berlin. 349 p.
  31. Schropp, S.J., F.G. Lewis, H.L. Windom, J.D. Ryan, F.D. Calder, and L.C. Burney. 1990. Interpretation of metal concentrations in eatuarine sediments of Florida using aluminum as a reference element. Estuaries, 13(3), 227-235. https://doi.org/10.2307/1351913
  32. Taylor, S.R. 1964. Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta, 28, 1273-1285. https://doi.org/10.1016/0016-7037(64)90129-2
  33. Windom, H.L., S.L. Schropp, F.D. Calder, J.D. Ryan, R.G. Smith, Jr., L.C. Burney, F.G. Lewis, and C.H. Rawlinson. 1989. Natural trace metal concentrations in estuarine and coastal marine sediment of the southeastern United States. Environ. Sci. Technol., 23, 314-320. https://doi.org/10.1021/es00180a008
  34. WSDOE(Washington State Department of Ecology). 1990. Focus: Sediment management standards. Olympia, Washington. 106 p.
  35. Zhao, Y.Y., M.C. Yan, and R.H. Jiang. 1995. Abundance of chemical elements in continental shelf sediment of China. Geo-Mar. Lett., 15, 71-76. https://doi.org/10.1007/BF01275409

Cited by

  1. Vertical Profiles and Assessment of Trace Metals in Sediment Cores From Outer Sea of Lake Shihwa, Korea vol.16, pp.2, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.2.71
  2. Spatial and temporal variations of trace metals in sediments from the artificial Saemangeum Lake, Korea vol.47, pp.5, 2013, https://doi.org/10.2343/geochemj.2.0268
  3. Seasonal and spatial distribution of nonylphenol and IBP in Saemangeum Bay, Korea vol.51, pp.8-12, 2005, https://doi.org/10.1016/j.marpolbul.2004.11.006
  4. Pollution and Ecological Risk Assessment of Trace Metals in Surface Sediments of the Ulsan-Onsan Coast vol.18, pp.4, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.4.245
  5. Speciation and Ecological Risk Assessment of Trace Metals in Surface Sediments of the Masan Bay vol.19, pp.2, 2014, https://doi.org/10.7850/jkso.2014.19.2.155
  6. Seasonal and spatial distribution of nonylphenol in Shihwa Lake, Korea vol.56, pp.6, 2004, https://doi.org/10.1016/j.chemosphere.2004.04.022
  7. Sediment Quality Assessment for Heavy Metals in Streams Around the Shihwa Lake vol.19, pp.1, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.1.25
  8. Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea vol.35, pp.2, 2013, https://doi.org/10.4217/OPR.2013.35.2.069
  9. Target organs of the Manila clam Ruditapes philippinarum for studying metal accumulation and biomarkers in pollution monitoring: laboratory and in-situ transplantation experiments vol.188, pp.8, 2016, https://doi.org/10.1007/s10661-016-5485-y
  10. The geochemical characteristic and quality assessment of surface sediments in Sihwa Lake vol.17, pp.12, 2016, https://doi.org/10.5762/KAIS.2016.17.12.333
  11. Spatial Characteristics of Pollutant Concentrations in the Streams of Shihwa Lake vol.33, pp.4, 2011, https://doi.org/10.4491/KSEE.2011.33.4.289
  12. The Environmental Impacts of Seasonal Variation on Characteristics of Geochemical Parameters in Lake Shihwa, Korea vol.13, pp.12, 2004, https://doi.org/10.5322/JES.2004.13.12.1089
  13. Evaluation of the potential impact of polluted sediments using Manila clam Ruditapes philippinarum: bioaccumulation and biomarker responses vol.19, pp.7, 2012, https://doi.org/10.1007/s11356-012-1044-4