초음파 펄스에코 신호의 3차원 처리

Three-Dimensional Processing of Ultrasonic Pulse-Echo Signal

  • 발행 : 2003.10.30

초록

비파괴 시험을 위한 3차원 구조의 초음파 영상에는 다양한 결함을 명백하게 보여줄 수 있을 만큼 상세하고 쉽게 알아볼 수 있는 정보가 제공되어야 한다. 수년 동안 원자력 발전소에서 사용된 금속관에 발견되는 소규모의 균열은 전형적인 결함들인데, 이러한 밀리미터 이하의 균열이나 결함은 최종 3차원 영상에서 묘사되어야만 의미 있는 검사가 될 것이다. 향상된 선명도와 그에 따른 결함의 발견 과정의 한 단계로써, 펄스에코(pulse-echo) 초음파를 사용한 3차원 영상제작 기술을 제안한다. 이 기술은 필요한 스캐닝과 펄스에코 데이터의 처리과정을 통한 검사로 3차원 물체의 3차원 영상을 생성하는데, 2차원 위너필터(Wiener fille.)에 의해 초음파 빔을 선명하게 하는 기술을 포함한다. 제안하는 위너필터는 빔의 전달에서 펄스에코 데이터를 초음파 빔 방향의 수직방향에 따라 필터링한다. 이 3차원 처리과정은 결함의 선명성을 증진시키고 사용자에게 3차원 구조물의 좌우 회전 및 축 회전과 같은 조작 능력을 제공한다. 이러한 조작 능력은 3차원에서 다양한 결함들의 크기와 위치의 분명한 묘사를 가능하게 한다.

Ultrasonic imaging of 3-D structures for nondestructive evaluation must provide readily recognizable images with enough details to clearly show various flaws that may or may not be present. Typical flaws that need to be detected are miniature cracks, for instance, in metal pipes having aged over years of operation in nuclear power plants; and these sub-millimeter cracks or flaws must be depicted in the final 3-D image for a meaningful evaluation. As a step towards improving conspicuity and thus detection of flaws, we propose a pulse-echo ultrasonic imaging technique to generate various 3-D views of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. We employ a 2-D Wiener filter that filters the pulse-echo data along the plane orthogonal to the beam propagation so that ultrasonic beams can be sharpened. This three-dimensional processing and display coupled with 3-D manipulation capabilities by which users are able to pan and rotate the 3-D structure improve conspicuity of flaws. Providing such manipulation operations allow a clear depiction of the size and the location of various flaws in 3-D.

키워드

참고문헌

  1. L. W. Schmerr Jr., Fundamentals of Ultrasonic Nondestructive Evaluation, Plenum Press, New York, pp. 6-12, (1998)
  2. Z.-H. Cho, J. P. Jones, and M. Singh, Foundations of Medical Imaging, John Wiley& Sons, New York, (1993)
  3. A. Macovski, Medical Imaging Systems. Prentice-Hall, Englewood Cliffs, (1983)
  4. M. Born and E. Wolf, Principles of Optics. New York: Pergamon, pp. 121-122, (1965)
  5. T. Gomm and J. Mauseth, 'State of the technology: ultrasonic tomography', Materials Evaluation, Vol. 57, No.7, pp. 747-752, (1999)
  6. M. P. Schuller and R. H. Atkinson, 'Evaluation of concrete using acoustic tomography', Quantitative Nondestructive Evaluation, (D. O. Thompson and D. E. Chimenti, Eds.), Vol. 14, Plenum Press, NewYork, pp. 2215-2222, (1995)
  7. J. F. Greenleaf, S. A. Johnson, W. F. Warroya, and F. A. Duck, 'Algebraic reconstruction of spatial distributions of acoustic velocities in tissue from their time-of-flight profiles', Acoustical Holography, Vol. 6, Plenum Press, New York, pp. 71-90, (1975)
  8. G. H. Glover and J. C. Sharp, 'Reconstruction of ultrasound propagation speed distribution in soft tissue: time-of-flight tomography', IEEE Trans. on Sonics and Ultrasonic, Vol.24, pp. 229-234, (1977)
  9. P. L. Carson, T. V. Oughton, and W. R. Hendee, 'Ultrasound transaxial tomography by reconstruction', Ultrasound in Medicine, Vol. 2, (D. N. White and R. W. Barns, Eds.) Plenum Press, New York, pp. 391-400, (1976)
  10. F. Denis, O. Basset, and G. Gimenez, 'Ultrasonic transmission tomography in refracting media: reduction of refraction artifacts by curved-ray techniques', IEEE Trans. Med. Imaging, Vol. 14, No.1, pp.173-188, (1995) https://doi.org/10.1109/42.370414
  11. R. Roth, 'Ray casting for solid modeling', Comput. Graph. Image Proc., Vol. 18, pp. 109-144, (1982) https://doi.org/10.1016/0146-664X(82)90169-1
  12. S. Kaczmarz, 'Angenaherte auflosung von systemen linearer gleichungen', Bull. Acad. Polon. Sci. Lett. A, pp. 355-357, (1937)
  13. G. T. Herman, Image Reconstruction from Projections. Academic Press, New York, (1980)
  14. P. Wells, 'Current status and future technical advances of ultrasonic imaging', IEEE Engr. in Med. and Biol., Vol. 19, No.5, pp. 14-20, (2000) https://doi.org/10.1109/51.870227
  15. R. A. Robb, Three-Dimensional Biomedical Imaging, VCH Publisher Inc., New York, pp.132-154, (1995)
  16. M. Krause, F. Mielentz, B. Milman, W. Muller, V. Schmitz and H. Wiggenhauser, 'Ultrasonic imaging of concrete members using an array system', NDT & E International, Vol. 34, pp. 403-408, (2001)
  17. M. Akhnak, O. Martinez, L. Ullate, and F. de Espinosa, '64 Elements two-dimensional piezoelectric array for 3D imaging',Ultrasonics, Vol. 40, pp. 139-143, (2002)
  18. J. Jeremy, U. Demirci, 'Medical imaging using capacitive micromachined ultrasonic transducer arrays', Ultrasonics, Vol. 40, pp. 471-476, (2002)
  19. R. Kazys and L. Svilainis, 'Analysis of adaptive imaging algorithms for ultrasonic non-destructive testing', Ultrasonics, Vol. 33, No.1, pp. 19-30, (1995) https://doi.org/10.1016/0041-624X(95)92035-3
  20. L. Capineri, L. Masotti, S. Rocchi, F. andreuccetti, M. Cerofolini and A. Tondini, 'Nearly real-time visualization of arbitrary two-dimensional sections from three-imensional acquisition', Ultrasound in Med.& Biol., Vol. 22, No.3, pp. 319-328, (1996) https://doi.org/10.1016/0301-5629(95)02048-9
  21. R. Prager, A. Gee, G. Treece, and L. Berman, 'Freehand 3D ultrasound without voxels: volume measurement and visualization using the Stradx system', Ultrasonics, Vol. 40, pp.109-115, (2002) https://doi.org/10.1016/S0041-624X(02)00103-8
  22. F. Lefebvre, N. Graillat, E. Cherin, G. Berger and A. Saied, 'Automatic three-dimensional reconstruction and characterization of articular cartilage from high-resolution ultrasound acquisitions', Ultrasound in Med.& Biol., Vol. 24, No.9, pp. 1369-1381, (1998) https://doi.org/10.1016/S0301-5629(98)00114-8
  23. S. Tong, D. B. Downey, H. Cardinal and A. Fenster, 'A Three-dimensional ultrasound prostate imaging system', Ultrasound in Med. & Biol., Vol. 22, No.6, pp. 735-746, (1996) https://doi.org/10.1016/0301-5629(96)00079-8
  24. A. Salustri and J. Roelandt, 'Ultrasonic three-dimensional reconstruction of the heart', Ultrasound in Med. & Biol., Vol. 21,No.3, pp. 281-293, (1995) https://doi.org/10.1016/0301-5629(94)00125-W
  25. J. W. Goodman, Introduction to Fourier Optics. McGraw-Hill, New York, (1968)
  26. A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes, 4th ed. McGraw Hill, Boston, (2002)
  27. R. C. Gonzalez, R. E. Woods, Digital Image Processing, 2nd ed. Prentice-Hall, New Jersey, pp. 262-266, (2002)
  28. B. Porat, A Course in Digital Signal Processing, John Wiley & Sons, New York, (1997)
  29. L. Rabiner and B. Gold, Theory and Application of Digital Signal Processing. Prentice-Hall, Englewood Cliffs, (1975)
  30. E. Kreyszig, Introductory Functional Analysis with Applications. John Wiley & Sons, NewYork, (1989)
  31. S. Schreiner and B. M. Dawant, 'The importance of ray pathlengths when measuring objects in maximum intensity projection images,' IEEE Trans. Med. Imag.,Vol. 15, No.4, pp. 568-579, (1996)
  32. S. M. Song and J. Kwon, 'Interpolation of CT slices for 3-D visualization by maximum intensity projections', Lecture Notes in Computer Science (Advances in Multimedia Information Processing), Vol. 2532, (Tsinchu,Taiwan), pp. 1065-1072, (2002)
  33. D. G. Brown and S. J. Riederer, 'Contrast-to noise ratios in maximum intensity projection images,' Magnetic Res. Med., Vol. 23, pp.130-137, (1992) https://doi.org/10.1002/mrm.1910230114
  34. Y. Sun and D. L. Parker, 'Performance analysis of maximum intensity projection algorithm for display of MRA Images,' IEEE Trans. Med. Img., Vol. 18, No. 12, pp. 1154-1169, (1999) https://doi.org/10.1109/42.819325
  35. J. Prosise, Prograrnmng Windows with MFC, 2nd ed. Microsoft Press, Redmond, (1999)