Organization of Projections from the Medial Temporal Cortical Areas to the Ventral Striatum in Macaque Monkeys

  • Jung, Yongwook (Department of Anatomy, School of Medicine Dongguk University) ;
  • Hong, Sungwon (Department of Physiology, School of Medicine Dongguk University)
  • Published : 2003.09.01

Abstract

Recent evidence on behaviors in macaque monkeys indicate that the medial temporal cortical areas such as the entorhinal cortex (EC), perirhinal cortex, and parahippocampal cortex (PHC) are importantly involved in limbic and sensory memory function. Neuroanatomical studies also have demonstrated that the medial temporal cortical areas are connected with the ventral striatum, although comparatively little is known about the precise topography of these connections. We investigated the topographic organization of connections between the medial temporal cortical areas and the ventral striatum by placing retrograde tracers into five different regions of the ventral striatum: the ventromedial caudate nucleus, ventral shell, central shell, dorsal core of the nucleus accumbens (NA), and ventrolateral putamen. We found that the shell of the NA was the main projection site from the medial temporal cortical areas. Within the shell of the NA, there were also differential connections: EC diffusely innervates shell of the NA, while the projections from the perirhinal cortex and PHC concentrate on the ventral shell of the NA. Taken together, it is possible that the ventral shell of the NA is the main integration site of the limbic and sensory memory coming from the EC, perirhinal cortex, and PHC.

Keywords

References

  1. Aggleton JP, Burton MJ, and Passingham RE (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190: 347-368 https://doi.org/10.1016/0006-8993(80)90279-6
  2. Aggleton JP, Neave N, Nagle S, and Sahgal A (1995) A comparision of the effects of medial prefrontal, cingulate cortex, and cingulum bundle lesions on tests of spatial memory: evidence of a double dissociation between frontal and cingulum bundle contributions. J Neurosci 15: 7270-7281 https://doi.org/10.1523/JNEUROSCI.15-11-07270.1995
  3. Amaral DG and Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230: 465-496 https://doi.org/10.1002/cne.902300402
  4. Amaral DG, Insausti R, and Cowan WM (1987) The entorhinal cortex of the monkey. I. Cytoarchitectonic organization. J Comp Neurol 264: 326-355 https://doi.org/10.1002/cne.902640305
  5. Barbas H and De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300: 549-571 https://doi.org/10.1002/cne.903000409
  6. Burwell RD and Amaral DG (1998a) Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol 391: 293-321 https://doi.org/10.1002/(SICI)1096-9861(19980216)391:3<293::AID-CNE2>3.0.CO;2-X
  7. Burwell RD and Amaral DG (1998b) Cortical afferents of the perirhinal, postrhinal and entorhinal cortices of the rat. J Comp Neurol 398: 179-205 https://doi.org/10.1002/(SICI)1096-9861(19980824)398:2<179::AID-CNE3>3.0.CO;2-Y
  8. Burns LH, Annett L, Kelley AE, Everitt BJ, and Robbins TW (1996) Effects of lesions to amygdala, ventral subiculum, medial prefrontal cortex, and nucleus accumbens on the reaction to novelty: implication for limbic-striatal interactions. Behav Neurosci 110: 60-73 https://doi.org/10.1037/0735-7044.110.1.60
  9. Carmichael ST and Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkey. J Comp Neurol 363: 642-664 https://doi.org/10.1002/cne.903630409
  10. Cavada C and Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287: 393-421 https://doi.org/10.1002/cne.902870402
  11. Deacon TW, Eichenbaum H, Rosenberg P, and Eckmann KW (1983) Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220: 168-190 https://doi.org/10.1002/cne.902200205
  12. Dolorfo CL and Amaral DG (1998) Entorhinal cortex of the rat: Organization of intrinsic connections. J Comp Neurol 398: 49-82 https://doi.org/10.1002/(SICI)1096-9861(19980817)398:1<49::AID-CNE4>3.0.CO;2-9
  13. Gimenez-Amaya JM, McFarland NR, de las Heras S, and Haber SN (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354: 127-149 https://doi.org/10.1002/cne.903540109
  14. Haber SN, Lynd E, Klein C, and Groenewegen HJ (1990) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293: 282-298 https://doi.org/10.1002/cne.902930210
  15. Haber SN, Kunishio K, Mizobuchi M, and Lynd-Balta E (1995) The orbital and medial prefrontal circuit through the primate basal ganglia. J Neurosci 15: 4851-4867 https://doi.org/10.1523/JNEUROSCI.15-07-04851.1995
  16. Haber SN and McFarland NR (1999) The concept of the ventral striatum in nonhuman primates. Ann N Y Acad Sci 887: 33-48 https://doi.org/10.1111/j.1749-6632.1999.tb09259.x
  17. Heimer L and Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (Ed), Golgi Centennial Symposium: Perspectives in Neurobiology. Ravan, New York, pp 177-193
  18. Insausti R, Amaral DG, and Crwan WM (1987a) The entorhinal cortex of the monkey: III. Subcortical afferents. J Comp Neurol 264: 356-395 https://doi.org/10.1002/cne.902640306
  19. Insausti R, Amaral DG, and Crwan WM (1987b) The entorhinal cortex of the monkey: III. Subcortical afferents. J Comp Neurol 264: 356-395 https://doi.org/10.1002/cne.902640307
  20. Insausti R, Marcos P, Arroyo-Jimenez M, Blaizot X, and Martine-Marcos A (2002) Comparative aspects of the olfactory portion of the entorhinal cortex and its projection to the hippocampus in rodents, nonhuman primates, and the human brain. Brain Res Bull 57: 5570-560 https://doi.org/10.1016/S0361-9230(01)00684-0
  21. Kelley AE, Domesick VB, and Nauta WJH (1982) The amygdalostriatal projection in the rat an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7: 615-630 https://doi.org/10.1016/0306-4522(82)90067-7
  22. Kesner RP, Famsworth G, and DiMattia BV (1989) Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behav Neurosci 103: 956-961 https://doi.org/10.1037/0735-7044.103.5.956
  23. Kling A and Steklis HD (1976) A neural substrate for affinitive behavior in nonhuman primates. Brain Behav Evol 12: 216-238
  24. Kling AS, Tachiki K, and Llovd R (1993) Neurochemical correlates of the Kluver-Bucy syndrome by in vivo microdialysis in monkey. Behav Brain Res 56: 161-170 https://doi.org/10.1016/0166-4328(93)90034-N
  25. Kunishino K and Haber SN (1994) Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input. J Comp Neurol 350: 337-356 https://doi.org/10.1002/cne.903500302
  26. Lingenhohl K and Finch DM (1991) Morphological characterization of rat entorhinal neurones in vivo: soma-dendrtic structure and axonal domains. Exp Brain Res 84: 57074 https://doi.org/10.1007/BF00231762
  27. Lynd-Balta E and Haber SN (1994) The organization of midbrain projections to the ventral striatum in the primate. Neuroscience 59: 609-623 https://doi.org/10.1016/0306-4522(94)90181-3
  28. Moran MA, Mufson EJ, and Mesulam MM (1987) Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256: 88-103 https://doi.org/10.1002/cne.902560108
  29. Myers RE and Swett C (1970) Social behavior deficits of free-ranging monkey after anterior temporal cortex of the removal: A preliminary report. Brain Res 18: 551-556 https://doi.org/10.1016/0006-8993(70)90140-X
  30. Naber PA, Witter MP and Silva LD (2001) Evidence for a direct projection from postrhinal cortex to subiculum in the rat. Hippocampus 11: 105-117 https://doi.org/10.1002/hipo.1029
  31. Paxinos G, Huang XF, and Toga AW (2000) The Rhesus Monkey Brain in Stereotaxic Coordinates. 2nd Ed. Academic Press, Sydney
  32. Rockland KS and Van Hoesen GW (1999) Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. Cereb Cort 9: 232-237 https://doi.org/10.1093/cercor/9.3.232
  33. Robbins TW and Everitt BJ (1996) Neurobehavioral mechanism of reward and motivation. Curr Opin Neurobiol 6: 228-236 https://doi.org/10.1016/S0959-4388(96)80077-8
  34. Stefanacci L, Suzuki WA, and Amaral DG (1996) Organization of connections between the amygdalod complex and the perirhinal and parahippocampal cortices in Macaque monkeys. J Comp Neurol 375: 552-582 https://doi.org/10.1002/(SICI)1096-9861(19961125)375:4<552::AID-CNE2>3.0.CO;2-0
  35. Steward O and Scoville SA (1976) Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 169: 347-370 https://doi.org/10.1002/cne.901690306
  36. Suzuki WA and Amaral DG (1994) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal cortex and parahippocampal cortices. J Neurosci 14: 1856-1877 https://doi.org/10.1523/JNEUROSCI.14-03-01856.1994
  37. Swanson LW and Kohler C (1986) Anatomical evidence for direct projections from the entorhinal area to the entire cortical mantle in the rat. J Neurosci 6: 3010-3023 https://doi.org/10.1523/JNEUROSCI.06-10-03010.1986
  38. Tamamaki N and Nojyo Y (1993) Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure-injection of neurobiotin. Hippocampus 3: 471-480 https://doi.org/10.1002/hipo.450030408
  39. Witter MP and Amaral DG (1991) Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 307: 434-459 https://doi.org/10.1002/cne.903070308
  40. Witter MP, Groenewegen HJ, Lopes da Silva FH, and Lohman AHM (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33: 161-254 https://doi.org/10.1016/0301-0082(89)90009-9
  41. Witter MP, Wouterlood FG, Naber PA, and Van Haefern T (2000) Anatomical organization of the parahipocampal-hipocampal network. Ann N Y Acad Sci 911: 1-24
  42. Wyss JM and Van Groen TV (1992) Connections between the retrosplenial cortex and the hippocampal formation in the rat: a review. Hippocampus 2: 1-12 https://doi.org/10.1002/hipo.450020102