Changes of Strength and Stiffness of Freeze-Dried Bovine Cortical Bone according to Rehydration Time in Electrolyte Solution

동결건조한 소의 치밀골에서 전해질용액의 침지시간에 따른 Strength와 Stiffness의 변화

  • 김남수 (전북대학교 수의과대학) ;
  • 장세웅 (전북대학교 수의과대학) ;
  • 김희은 (전북대학교 수의과대학) ;
  • 정인성 (건국대학교 수의과대학) ;
  • 최성진 (전북대학교 수의과대학) ;
  • 최인혁 (전북대학교 수의과대학)
  • Published : 2003.12.01

Abstract

Transplanted cortical bone grafts of freeze-dried bones also function as sustaining for defected bones, however, it has less strength and is fragile without rehydration. In this study, strength and stiffness of freeze-dried bone from bovine cortical bones were evaluated by three point bending test according to different time frames such as rehydration times of 0.5, 3, 6, 12 and 24 hrs in electrolyte solution and was compared with those of frozen bones. The strength and stiffness of frozen bone were $264.4\pm36.7$ MPa, $17.0\pm1.5$ GPa, respectively. The strength and stiffness of freeze-dried bone which fat was removed by treatments of chloroform-methanol solutions for 6 days, then was freeze-dried at $-80^{\circ}C$ and sterilized with ethylene oxide gas, were $224.9\pm27.6$ MPa, $19.2\pm2.8$ GPa, respectively. The strength and stiffness of feeze-dried bone were decreased 15.0% and increased 13.2% than these of frozen bone, respectively. The strength and stiffness of freeze-dried bone rehydrated for 6 hrs were restored to 96.0% strength and 99.2% stiffness of frozen bone. The rehydration time of freeze-dried bone which had the highest strength and stiffness was six hours and three hours, respectively. The results of the mathematica program for the variation of the strength and stiffness showed 3 hours and 30 minutes of rehydration time in electrolyte solution for the best condition in the strength and stiffness which was adequate to treat freeze-dried cortical bone.

Keywords

References

  1. Akkus O and Rimnac CM. Fracture resistance of gamma radiation sterilized cortical bone allografts. J Orthop Res. 2001; 19(5): 927-934 https://doi.org/10.1016/S0736-0266(01)00004-3
  2. Allison SD. Randilph TW, Manning MC, Middleton K. Davis A. Carpnter JF. Effect of drying methods and additives on structure and function of actin: Mechanism of dehydration-induced damage and its inhibition. Archives of Biochemistry and Biophysics. 1998; 358(1) : 171-181 https://doi.org/10.1006/abbi.1998.0832
  3. Bettin D, Polster J, Rullkotter V, von Versen R, Fuchs S. Good preservation of initial mechanical properties in lipid-extracted, disinfected, freeze-dried sheep patellar tendon grafts. Acta Orthop Scand. 2003; 74(4): 470-5 https://doi.org/10.1080/00016470310017811
  4. Borchers RE, Gibson LJ, Burchardt H, Hayes WC. Effects of selected thermal variables on the mechanical properties of trabecular bone. Biomaterials 1995; 16: 545-551 https://doi.org/10.1016/0142-9612(95)91128-L
  5. Broz JJ, Simske SJ, Greenberg AR, Luttges MW. Effects of rehydration state on the flexural properties of whole mouse long bones.J Biomech Eng. 1993; 115(4A): 447-9 https://doi.org/10.1115/1.2895510
  6. Bumann A, Kopp S, Eickbohm JE, Ewers R. Rehydration of lyophilised cartilage grafts sterilized by different methods. Int J Oral Maxillofac Surg, 1989; 18(6): 370-372 https://doi.org/10.1016/S0901-5027(89)80036-0
  7. Burchardt H, Jones H, Glowczewskie F, Runder C, Ennecking WF. Freeze-dried allogeneic segmental cortical-bone grafts in dogs. J Bone & Joint Surg Am 1978; 60(8): 1082-1090
  8. Burstein AH, Zika JM, Heiple KG, Klein L. Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg Am 1975; 57(7): 956-61
  9. Choi IH, Kim HK, Kim NS. Effectiveness of freeze-dried bone grafts on the non-union fracture model of dogs. Korean J Vet Res 1996; 36(2): 495-511
  10. Choi IH, Lee JI. Effectiveness of transplantation by freeze-dried bone of goat to dogs. Korean J Vet Clin Med 1998; 15(2): 442-449
  11. Choi IH, Lee MJ. Choi OK, Joung IS, Choi SJ, Kim NS. Changes of xenograft according to extract time with chloroform-methanol solution in freeze-dried cortical bone of pig transplanted to dogs. Korean J Vet Clin Med 2003; 20(1): 91-95
  12. Conrad EU, Ericksen DP, Tencer AF, Strong DM, Mackenzie AP. The effects of freeze-drying and rehydration on cancellous bone. Clin Orthop & Related Res 1993; 290: 279-284
  13. Cornu 0, Banse X, Docquier PL, Luyckx S, Delloye C. Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res. 2000; 18(3): 426-431 https://doi.org/10.1002/jor.1100180314
  14. Cun-ey JD. The effects of drying and re-wetting on some mechanical properties of cortical bone. J Biomech 1988; 21(5): 439-4 https://doi.org/10.1016/0021-9290(88)90150-9
  15. Cutting CB, McCarthy JG, Knize DM. Repair and grafting of bone. In: Plastic surgery I, General phnciple. WB Saunders co. 1990: 594-597
  16. Drozdzowska B, Pluskiewicz W, Przedlackl J. Prediction of the biomechanical properties of cancellous bone using ultrasaund velocity and bone mineral density - an vitro study. Med Sci Monit, 2002; 8(1): MT15-20
  17. Flynn J, Rudert MJ, Olson E, Baratz M, Hanley E. The effects of freezing or freeze-drying on the biomechanical properties of the canine intervertebral disc. Spine 1990; 15(6): 567-70 https://doi.org/10.1097/00007632-199006000-00025
  18. Griffon DJ, Wallace LJ, Bechtold JE. Biomechanical properties of canine corticocancellous bone frozen in normal saline solution. Am J Vet Res 1995; 56(6): 822-5
  19. Grzegorczyn S, Turczynski B, Slowinska L. The effect of rehydration on the elasticity modulus and strength of lyophilised and irradiated femur bone in the human] Chir Narzadow Ruchu Ortop Pol 1996; 61(6): 593-599
  20. Grzegorczyn S, Turczynski B. Strength of dense, lyophilized and irradiated cortical bone of the human femur: Chir Narzadow Ruchu Ortop Pol 1995; 60(2): 129-33
  21. Grzegorczyn S, Turczynski B. Elasticity modulus of lyophilized cortical bone in the human femur. Chir Narzadow Ruchu Ortop Pol 1994; 59(2): 153-7
  22. Hamer AJ, Strachan JR, Black MM, Ibbotson CJ, Elson RA. Biomechanical properties of cortical allograft bone using a new method of bone strength measurement; A comparison of fresh, fresh-frozen and irradiated bone. J bone and Joint Sur 1996; 78-B(3): 363-368
  23. Hubble MJW. Bone transplantation. Current Orthopadics 2001; 15(3): 199-205 https://doi.org/10.1054/cuor.2001.0179
  24. Jameson MW, Hood JA, Tidmarsh BG. The effects of dehydration and rehydration on some mechanical properties of human dentine. J Biomech 1993; 26(9): 1055-65 https://doi.org/10.1016/S0021-9290(05)80005-3
  25. Jerosch J, Granrath M, Clahsen H and Halm H. Effects of various rehydration pehods on the stability and water content of bone transplants following freeze-drying, gamma stehlization and lipid extraction. Z Orthop Ihre Grenzgeb 1994; 132(4): 335-341 https://doi.org/10.1055/s-2008-1039984
  26. Jerosch J, Muchow H, Clahsen H. Stability of human bone cortex following various preservation and sterilization methods. Z Orthop Ihre Grenzgeb 1991; 129(4): 295-301 https://doi.org/10.1055/s-2008-1040244
  27. Kakiuchi M, Ono K. Preparation of bank bone using defatting, freeze-drying and sterilisation with ethylene oxide gas. Part 2. Clinical evaluation of its efficacy and safety. International Orthopedics(SICOT) 1996; 20: 147-152 https://doi.org/10.1007/s002640050052
  28. Kakiuchi M, Ono K, Nishimura A, Shiokawa H. Preparation of bank bone using defatting, freeze-drying and sterilisation with ethylene oxide gas. Part 1. Experimental evaluation of its efficacy and safety, International Orthopaedics(SICOT) 1996; 20: 142-146 https://doi.org/10.1007/s002640050051
  29. Kakiuchi M.(恒內 雅明). 同種保存骨-意業と新應用, 日整會誌(J Jpn Orthop Assoc) 1994; 68(1): 26-35
  30. Kang JS and Kim NH. The biomechanical properties of deepfreezing and freeze drying bones and their biomechanical changes after in-vivo allograft. Yonsei Medical Joumal 1995; 36(4): 332-335
  31. Kim NS, Hwang EH, Choi SJ, Jung IS, Choi OK, Choi IH. Biomechanical properties of cortical bone in bovine long bones. Korean J Vet Clin Med 2003; 20(3): 345-350
  32. Kristiansen J. Leakage of a trapped fluorescent marker rom liposomes: effects of eutectic crystallization of NaCl and internal freezing. Cryobiology 1992; 29(5); 575-584 https://doi.org/10.1016/0011-2240(92)90062-7
  33. Laforest P, Kempf JF, Follea G, Karger C, Kempf I. Comparison of mechanical qualities of cortical bone preserved by various freezing methods. Rev Chir Orthop Reparatrice Appar Mot 1991; 77(6): 389-395
  34. Markel MD, Sielman E, Rapoff AJ, Kohles SS. Mechanical properties of long bones in dogs. Am J Vet Res. 1994; 55(8): 1178-83
  35. Martinez S, Walker T. Bone grafting. Vet Clin North Am 1999; 29(5): 1207-1219
  36. Moreno J and Forriol F. Effects of preservation on the mechanical strength and chemical composition of cortical bone: an experimental study in sheep femora. Biomaterials 2002; 23: 2615-2619 https://doi.org/10.1016/S0142-9612(01)00402-1
  37. Pelker RR, Friedlaender GE, Markham TC, Panjabi MM, Moen CJ. Effects of freeze-drying on the biomechanical properies of rat bone. J Orthop Res 1984; 1(4): 405-411 https://doi.org/10.1002/jor.1100010409
  38. Pelker RR, Friedlaender GE, Markham TC. Biomechanical properties of bone grafts. Clin Orthop 1983; 174: 54-57
  39. Randall RL, Pelker RR, Friedlaender GE, Goldsmith SL, Panjabi MM. Sequential dependence of freeze-drying and irradiation on biomechanical properties of rat bone. Am J Orthop 2002; 31(3): 129-134
  40. Rho JY, Ashman RB, Tumer CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 1993; 26(2): 111-119 https://doi.org/10.1016/0021-9290(93)90042-D
  41. Roe SC, Pijanowski G, Johnson AL. Biomechanical properties of cortical bone allografts prepared for bone banking(Abstract). Vet Sur 1985; 14: 62-63
  42. Roe SC, Pijanowski GJ, Johnson AL. Biomechanical properties of canine cortical bone allografts: Effrects of preparation and storage. Am J Vet Res 1988; 49(6): 873-877
  43. Rohlmann A, Zilch H, Bergmann G, Kolbel R. Material properties of femoral cancellous bone in axial loading. Part I: Time independent properties. 1: Arch Orthop Trauma Surg 1980; 97(2): 95-102 https://doi.org/10.1007/BF00450930
  44. Suzuki T, Komatsu H and Miyajima K. Effects of glucose and its oligomers on the stability of freeze-dried liposomes. Biomech Biophys Acta 1996; 1278: 176-182 https://doi.org/10.1016/0005-2736(95)00221-9
  45. Turner WD, Vasseur P, Gorek JE, Rodrigo JJ, Wedell JR. An in vitro study of the structural properties of deep-frozen versus freeze-dried, ethylene oxide-sterilized canine anterior cruciate ligament bone-ligament-bone preparations. Clin Orthop 1988; 230: 251-6
  46. Van Winden EC, Zhang W, Crommelin DJ. Effect of freezing rate on the stability of liposomes during freeze-drying and rehydration. Pharm Res 1997; 14(9); 1151-1160 https://doi.org/10.1023/A:1012142520912
  47. Vashishth D, Behiri JC and Bonfield W. Crack growth resistance in cortical bone: concept of microcrack toughening J Biomech 1997: 30(8); 763-769 https://doi.org/10.1016/S0021-9290(97)00029-8
  48. Vashishth D, Tanner KE and Bonfield W. Contribution, development and morphology of microci-acking in cortical bone during crack propagation. J Biomech 2000; 33(9): 1169-1174 https://doi.org/10.1016/S0021-9290(00)00010-5
  49. Wachter NJ, Khschak GD, Mentzel M, Sarkar MR, Ebinger T, Kinzl L, Claes L, Augat P. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro, Bone 2002; 31(1): 90-95 https://doi.org/10.1016/S8756-3282(02)00779-2
  50. Yeni YN, Fyhrie DP. Fatigue damage-fracture mechanics interaction in cortical bone. Bone 2002; 30(3): 509-514 https://doi.org/10.1016/S8756-3282(01)00696-2
  51. Zhang W, van Winden EC, Bouwstra JA, Crommelin DJ. Enhanced permeability of freeze-dried liposomal bilayers upon rehydration. Cryobiology 1997; 35(3): 277-289 https://doi.org/10.1006/cryo.1997.2050
  52. Zioupos P. Accumulation of in-vivo fatigue microdamage and its relation to biochemical properties in aging human coitical bone. Journal of Microscopy 2001; 201(2): 270-278 https://doi.org/10.1046/j.1365-2818.2001.00783.x
  53. 우영균. 골이식 및 골이식 대체물. 대한정형외과학회지. 1995; 제 39차 추계학술대회 연수강좌: 143-152
  54. 장익열. 동결건조골에 대한 소고. 대한정형외과학회지 1988; 23(3): 929-935