순복사계의 야외 상호 비교 및 보정

Field Intercomparison and Calibration of Net Radiometers

  • Byung-Kwan Moon (Global Environment Laboratory/Department of Atmospheric Sciences, Yonsei University) ;
  • Sang-Boom Ryoo (Climate Research Laboratory, Korean Meteorological Research Institute) ;
  • Yong-Hoon Youn (Marine Meteorology and Earthquake Research Laboratory, Korean Meteorological Research Institute) ;
  • Jonghwan Lim (Division of Forest Ecology, Korea Forest Research Institute) ;
  • Joon Kim (Global Environment Laboratory/Department of Atmospheric Sciences, Yonsei University)
  • 발행 : 2003.06.01

초록

순복사는 지표 에너지 수지의 가장 근본적인 요소 중 하나이다. 순복사의 정확한 관측을 위해, 주기적이고 지속적인 순복사계 보정이 요구된다. 플럭스 관측에 널리 사용되는, 두 가지 타입의 대표적인 순복사계 (Q-7.1과 CNR1)의 상호 비교 및 보정 실험이 약 4개월 간격으로 두 차례 시행되었다. Q-7.1과 CNR1 간의 차이는 7.7% 이내였고, 표준 기기와의 보정 후 오차는 3.2%이내였다. 순복사계의 반응 차이와 보정 계수는 대기 상태, 특히 계절 변화에 따른 온도 차이에 따라 다르게 나타났다. 결론적으로, 주기적으로 보정된 Q-7.1은 CNR1을 대체하여 장기 관측에 사용될 수 있고, 보정 주기로는 4-6개월이 권장된다.

Net radiation (Rn) is one of the most fundamental components in surface energy budget. For an accurate measurement of Rn, periodic and consistent calibrations of net radiometers are required. With a 4-month time interval, two field experiments were conducted to inter-compare and calibrate two types of net radiometers (the Q-7.1 and the CNR1), widely used in flux measurements. Differences between the Q-7.1 and the CNR1 net radiometers were within 7.7%, and the errors after calibration against the standard net radiometer were <3.2%. Radiometric responses and calibration factors appeared to have changed with sky renditions, especially temperature difference with season's progress. We concluded that the periodically calibrated Q-7.1 can replace more expensive, more accurate CNR1 net radiometer for long-term field measurements, providing that field calibrations of net radiometers are performed every 4-6 months interval.

키워드

참고문헌

  1. Brotzge, J. A. and C. E. Duchon, 2000: A field comparison among a domeless net radiometer, two four-component net radiometers, and a domed net radiometer. J. Atmos. Oceanic Technol., 17, 1569-1582.
  2. Campbell Sci. Inc., 1996: Q-7.1 net radiometer, 8pp.
  3. Campbell Sci. Inc., 2002: CNR1 net radiometer Instruction manual, 20pp.
  4. Colello, G. D., C. Grivet, P. J. Sellers and J. A. Berry, 1998: Modeling of energy, water, and $CO_2$ flux in a temperate grassland ecosystem with SiB2: May-October 1987, J. Atmos. Sci., 55, 1141-1169.
  5. Field, R. T., L. J. Fritschen, E. T. Kanemasu, E. A. Smith, J. B. Stewart, S. B. Verma and W. P. Kustas, 1992: Calibration, comparison, and correction of net radiation instruments used during FIFE. J. Geophys. Res., 97, 18681-18695.
  6. Gonzalez, J. -A. and J. Calbo, 1999: Influence of the global radiation variability on the hourly diffuse fraction correlations, Solar Energy, 65, 119-131.
  7. Gu, L., J. D. Fuentes, H. H. Shugart, R. M. Staebler and T. A. Black, 1999: Responses of net ecosystem exchange of carbon dioxide to changes in cloudiness: Results from two North American deciduous forest, J. Geophys. Res., 104, 31421-31434.
  8. Halldin, S. and A. Lindroth, 1992: Errors in net radiometry:Comparison and evaluation of six radiometer designs, J. Atmos. Oceanic Technol., 9, 762-783.
  9. Kipp & Zonen., 1997: Instruction manual CNR 1 netradiometer, 41pp.
  10. Kondratyev, K. Ya., 1970: Global atmospheric research programme (GARP) and radiation factors of weather and climate. Radiation Including Satellite Techniques, WMO Tech. Note, No. 104, TP. 136, Secretariat of the World Meteorological Organization, Geneve, 23-32.
  11. Smith, E. A., G. B. Hodges, M. Bacrania, H. J. Cooper, M. A. Owens, R. Chappell, and W. Kincannon, 1997:BOREAS net radiometer engineering study. National Aeronautical Space Administration Rep. Grant NAG5-2447, The Florida State University, Tallahassee, FL. 51pp.
  12. Szeicz, G., 1975: Instruments and their exposure. Vegetation and the Atmosphere, Vol. 1, Monteith, J. L. (Ed.), 278pp.
  13. Willmott, C. J., 1981: On the validation of models, Physical Geography, 2, 184-194.