Solid-Phase Refolding of Inclusion Body Protein in Packed Bed Adsorption and Expanded Bed Adsorption Chromatography

Packed Bed Adsorption과 Expanded Bed Adsorption 크로마토그래피를 이용한 내포체 단백질의 고체상 재접힘

  • 최원찬 (한양대학교 화학공학과 생물공정연구실) ;
  • 김민영 (한양대학교 화학공학과 생물공정연구실) ;
  • 서창우 (한양대학교 화학공학과 생물공정연구실) ;
  • 이은규 (한양대학교 화학공학과 생물공정연구실)
  • Published : 2003.12.01

Abstract

‘LK (lipoprotein kringle) 68’is a polypeptide of a modified ansiostatin consisting of three kringle structures that might be clinically useful as a potential cancer therapeutics. It can be produced by overexpressing it as inclusion body in recombinant E. coli. In this study, solid-phase refolding processes using packed bed adsorption (PBA) and expanded bed adsorption (EBA) column were carried out to compare their refolding yields with that of the conventional, solution-phase refolding process, For the solution-phase and the PBA-mediated processes employing Q-Sepharose, washed inclusion body was used as the starting material, whereas both washed inclusion body and E. coli homogenate were used for the EBA-mediated process employing streamline DEAE. On the final recovery LK68 per unit mass of wet cell basis, the EBA- and PBA-mediated processes showed about 2.7- and 1.5-fold higher yields, respectively, than the solution-phase refolding method. The solid-phase refolded LK68 demonstrated the same Iysine binding bioactivity and the retention time in the RP-and SEC-HPLC as those of the native protein.

재조합 대장균에서 내포체 형태로 발현시킨 LK68을 생물학적 활성을 가진 native한 단백질로 재생시키기 위해서 PBA 크로마토그래피와 EBA 크로마토그래피를 이용한 고체상 재접힘을 수행하였다. 내포체와 세포파쇄액을 시작물질로 하여 재접힘 공정을 수행하였으며 총 단백질 회수율과 재접힘 수율을 비교한 결과, EBA 공정이 기존의 액상 재접힘이나 PBA를 이용한 재접힘 공정에 비하여 우수함을 확인하였다. 또한 Iysine binding, RP-HPLC, SEC-HPLC, Ellman method 등을 사용하여 분석한 결과 재접힘된 LK68이 native LK68와 동등함을 확인하였다. 본 연구를 통해 EBA 크로마토그래피를 이용한 재접힘 방법은 재접힘 단계의 수율을 향상시킬 뿐 아니라 공정 단계, 시간 등을 감소시켜 공정 성능을 전체적으로 향상시킬 수 있음을 제시하였다.

Keywords

References

  1. Nature v.407 Angiogenesis in cancer and other diseases Carmeliet,P.;R.K.Jain https://doi.org/10.1038/35025220
  2. J. Biol. Chem. v.267 Angiogenesis Folkman,J.;y.Shing
  3. J. Biol. Chem. v.271 Kringle domanis of human angiostatin Cao,Y.;R.W.Ji;D.Davidson;J.Schaller;D.Marti;S.Sohndel;S.G.McCance;M.S.O'Reilly;M.Llinas;J.Folkman https://doi.org/10.1074/jbc.271.46.29461
  4. Biol. Chem. v.383 Apolipoprotein (a): structure function relationship at the lysine-binding site and plasminogen activator cleavage site Angles-Cano,E.;G.Rojas https://doi.org/10.1515/BC.2002.009
  5. Biochem. Biophy. Res. Comm. v.257 Apolipoprotein(a), a link between atherosclerosis and tumor angiogenesis Trieu,V.N.;F.M.Uckun https://doi.org/10.1006/bbrc.1999.0519
  6. Korean patent, 10-2002-7003512 Jang,J.H.;J.S.Kim;E.J.Park;J.S.Yeum;S.I.Jung
  7. Bioseparation v.10 Refolding of protein inclusion bodies directly form E. coli homogenate using expanded bed adsorption chromatography Cho,T.H.;S.J.Ahn;E.K.Lee https://doi.org/10.1023/A:1016305603569
  8. US patent 4,977,248 Creighton,T.E.
  9. Nature Biotech. v.14 Improved refolding of an immobilized fusion protein Stempfer,G.;B.Holl-Neugebauer;R.Rudolph https://doi.org/10.1038/nbt0396-329
  10. Biotechnol. Bioprocess Eng. v.7 Solid-phase refolding of poly-lysine gagged fusion protein of hEGF and Angiogenin Park,S.J.;R.kang;C.W.Suh;Y.G.Chai;O.B.Kwon;S.K.Park;E,J,Lee https://doi.org/10.1007/BF02935871
  11. Bioseparation v.5 Analysis of some operation parameters of novel adsorbents for recovery of proteins in expanded beds Hjorth,R.;S.Kampe;M.Carlsson
  12. Biochem. Biophys. Res. Commu. v.264 The tumor-suppressing activity of angiostatin protein residues within kringles 1 to 3 MacDonald,N.J.;A.C.Murad;W.e.Fogler;Y.Lu;K.L.Sim https://doi.org/10.1006/bbrc.1999.1486
  13. Arch. Biochem. Biophys. v.82 Tissue sulfhydryl groups Ellman,G.L. https://doi.org/10.1016/0003-9861(59)90090-6
  14. Bio/Technology v.9 Renaturation, purification and characterization of recombinant $F_{ab}$fragments produced in Escherichia coli Buchner,J.;R.Rudolph https://doi.org/10.1038/nbt0291-157
  15. Bio/Technology v.8 Cosolvent assisted protein refolding Cleland,J.L.;D.I.C.Wang https://doi.org/10.1038/nbt1290-1274
  16. Protein Exp. Purif. v.11 An efficient system for production of recombinant urokinase-type plasminogen activator Tang,W.;Z.Y.Sun;R.Pannell;V.Gurewich;J.N.Liu https://doi.org/10.1006/prep.1997.0800
  17. Proc. Biochem. v.36 Effects of operating parameters in in vitro renaturation of a fusion protein of human growth hormone and glutathione S transgerase from inclusion body Kim,C.S.;E.K.Lee https://doi.org/10.1016/S0032-9592(00)00185-0
  18. Bioseparation v.8 Cell/adsorbed interaction in expanded bed adsorption of proteins Feuser,J.;J.Walter;M.R.Kula;J.Thommes https://doi.org/10.1023/A:1008071731987