Polymerization of ADP-Ribose Pyrophosphatase: Conversion Mechanism of $Mg^{2+}-Dependent$ ADP-Ribose Pyrophosphatase into $Mg^{2+}-Independent$ Form

  • Kim, Dae-Ki (Microbiology and Immunology, Chonbuk National University Medical School) ;
  • Kim, Jong-Hyun (Obstetrics and Gynecology, Chonbuk National University Medical School) ;
  • Song, Eun-Kyung (Department of Biochemistry, Institute of Medical Science, Microbiology and Immunology, Chonbuk National University Medical School) ;
  • Han, Myung-Kwan (Microbiology and Immunology, Chonbuk National University Medical School) ;
  • Kim, Jong-Suk (Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School)
  • Published : 2003.10.01

Abstract

ADP-ribose pyrophosphatase (ADPRase) hydrolyzes ADP-ribose (ADPR) into AMP and ribose-5'-phosphate. It is classified into two groups, $Mg^{2+}$-dependent and $Mg^{2+}$-independent ADPRase, depending on its $Mg^{2+}$requirement. Here, we purified $Mg^{2+}$-dependent ADPRase from rabbit liver and examined what factors affect $Mg^{2+}$ requirement. The purified enzyme showed a single band with the molecular weight of 34 kDa on SDS-PAGE both in the presence and absence of 2-mercaptoethanol. The molecular weight of the native enzyme calculated by gel filtration was 68 kDa, indicating that ADPRase is a dimer made up of two identical subunits. $Mg^{2+}$-dependent ADPRase with the highest ADPR affinity had a $K_m$ of 160$\pm$10 $\mu$M and a pH optimum of around pH 9.5. Treatment of the purified ADPRase with heated cytosol fractions at 37$^{\circ}C$ for 3 h caused some changes in the chemical properties of the enzyme, including an increase in molecular weight, a decrease in solubility, and a loss of $Mg^{2+}$-dependency. The molecular weight of the cytosol-treated ADPRase measured by gel filtration was over 420 kDa, suggesting, for the first time, that ADPRase could be polymerized by undefined cytoplasmic factors, and that polymerization is accompanied by changes in the solubility and metal ion dependency of the enzyme.

Keywords

References

  1. Ashwell, G., Colorimetric determination of sugars. Methods Enzymol., 3, 73-105 (1957) https://doi.org/10.1016/S0076-6879(57)03350-9
  2. Bernet, D., Pinto, R. M., Costas, M. J., Canales, J., and Cameselle, J. C., Rat liver mitochondrial ADP-ribose pyrophosphatase in the matrix space with low Km for free ADP-ribose. Biochem. J., 299 (Pt 3), 679-682 (1994) https://doi.org/10.1042/bj2990679
  3. Canales, J., Pinto, R. M., Costas, M. J., Hernandez, M. T., Miro, A., Bernet, D., Fernandez, A., and Cameselle, J. C., Rat liver nucleoside diphosphosugar or diphosphoalcohol pyrophosphatases different from nucleotide pyrophosphatase or phosphodiesterase I: substrate specificities of Mg(2+)-and/or Mn(2+)-dependent hydrolases acting on ADP-ribose. Biochim. Biophys. Acta, 1246, 167-177 (1995) https://doi.org/10.1016/0167-4838(94)00191-I
  4. Clapper, D. L., Walseth, T. F., Dargie, P. J., and Lee, H. C., Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol triphosphate. J. Biol. Chem., 262, 9561-9568 (1987)
  5. Fernandez, A., Ribeiro, J. M., Costas, M. J., Pinto, R. M., Canales, J., and Cameselle, J. C., Specific ADP-ribose pyrophosphatase from Artemia cysts and rat liver: effects of nitroprusside, fluoride and ionic strength. Biochim. Biophys. Acta, 1290, 121-127 (1996) https://doi.org/10.1016/0304-4165(96)00019-0
  6. Gabelli, S. B., Bianchet, M. A., Bessman, M. J., and Amzel, L. M., The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat. Struct. Biol., 8, 467-472 (2001) https://doi.org/10.1038/87647
  7. Gabelli, S. B., Bianchet, M. A., Ohnishi, Y., Ichikawa, Y., Bessman, M. J., and Amzel, L. M., Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a Nudix hydrolase. Biochemistry, 41, 9279-9285 (2002) https://doi.org/10.1021/bi0259296
  8. Hellmich, M. R. and Strumwasser, F., Purification and characterization of a molluscan egg-specific NADase, a secondmessenger enzyme. Cell Regul., 2, 193-202 (1991)
  9. Jacobson, E. L., Cervantes-Laurean, D., and Jacobson, M. K., Glycation of proteins by ADP-ribose. Mol. Cell. Biochem., 138, 207-212 (1994) https://doi.org/10.1007/BF00928463
  10. Kim, J. S., Kim, W. Y., Rho, H. W., Park, J. W., Park, B. H., Han, M. K., Kim, U. H., and Kim, H. R., Purification and characterization of adenosine diphosphate ribose pyrophosphatase from human erythrocytes. Int. J. Biochem. Cell Biol., 30, 629-638. (1998) https://doi.org/10.1016/S1357-2725(97)00142-8
  11. Kwak, Y. G., Park, S. K., Kim, U. H., Han, M. K., Eun, J. S., Cho, K. P., and Chae, S. W., Intracellular ADP-ribose inhibits ATPsensitive K+ channels in rat ventricular myocytes. Am. J. Physiol., 271, C464-468 (1996) https://doi.org/10.1152/ajpcell.1996.271.2.C464
  12. Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685 (1970) https://doi.org/10.1038/227680a0
  13. Lee, H. C., Walseth, T. F., Bratt, G. T., Hayes, R. N., and Clapper, D. L., Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J. Biol. Chem., 264, 1608-1615 (1989)
  14. Levitan, I. B. and Cibulsky, S. M., Biochemistry. TRP ion channels-two proteins in one. Science, 293, 1270-1271 (2001) https://doi.org/10.1126/science.1062504
  15. Miro, A., Costas, M. J., Garcia-Diaz, M., Hernandez, M. T., and Cameselle, J. C., A specific, low Km ADP-ribose pyrophosphatase from rat liver. FEBS Lett., 244, 123-126 (1989) https://doi.org/10.1016/0014-5793(89)81176-7
  16. Perraud, A. L., Fleig, A., Dunn, C. A., Bagley, L. A., Launay, P., Schmitz, C., Stokes, A. J., Zhu, Q., Bessman, M. J., Penner, R., Kinet, J. P., and Scharenberg, A. M., ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature, 411, 595-599 (2001) https://doi.org/10.1038/35079100
  17. Ribeiro, J. M., Costas, M. J., and Cameselle, J. C., ADP-ribose pyrophosphatase-I partially purified from livers of rats overdosed with acetaminophen reveals enzyme inhibition in vivo reverted in vitro by dithiothreitol. J. Biochem. Mol. Toxicol., 13, 171-177 (1999) https://doi.org/10.1002/(SICI)1099-0461(1999)13:3/4<171::AID-JBT7>3.0.CO;2-V
  18. Ueda, K. and Hayaishi, O., ADP-ribosylation. Annu. Rev. Biochem., 54, 73-100 (1985) https://doi.org/10.1146/annurev.bi.54.070185.000445